Loading…
Fundamental mechanisms of visual motion detection: models, cells and functions
Taking a comparative approach, data from a range of visual species are discussed in the context of ideas about mechanisms of motion detection. The cellular basis of motion detection in the vertebrate retina, sub-cortical structures and visual cortex is reviewed alongside that of the insect optic lob...
Saved in:
Published in: | Progress in neurobiology 2002-12, Vol.68 (6), p.409-437 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c388t-b1ecfb24ec02dd3ec5e1dc0b26b78f03d37ca982e70819cea567cc19d4dfab373 |
---|---|
cites | cdi_FETCH-LOGICAL-c388t-b1ecfb24ec02dd3ec5e1dc0b26b78f03d37ca982e70819cea567cc19d4dfab373 |
container_end_page | 437 |
container_issue | 6 |
container_start_page | 409 |
container_title | Progress in neurobiology |
container_volume | 68 |
creator | Clifford, C W G Ibbotson, M R |
description | Taking a comparative approach, data from a range of visual species are discussed in the context of ideas about mechanisms of motion detection. The cellular basis of motion detection in the vertebrate retina, sub-cortical structures and visual cortex is reviewed alongside that of the insect optic lobes. Special care is taken to relate concepts from theoretical models to the neural circuitry in biological systems. Motion detection involves spatiotemporal pre-filters, temporal delay filters and non-linear interactions. A number of different types of non-linear mechanism such as facilitation, inhibition and division have been proposed to underlie direction selectivity. The resulting direction-selective mechanisms can be combined to produce speed-tuned motion detectors. Motion detection is a dynamic process with adaptation as a fundamental property. The behavior of adaptive mechanisms in motion detection is discussed, focusing on the informational basis of motion adaptation, its phenomenology in human vision, and its cellular basis. The question of whether motion adaptation serves a function or is simply the result of neural fatigue is critically addressed. |
doi_str_mv | 10.1016/S0301-0082(02)00154-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72843854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18666484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-b1ecfb24ec02dd3ec5e1dc0b26b78f03d37ca982e70819cea567cc19d4dfab373</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhnNQ3HX1Jyg9iYLVSdKkqTdZXBUWPajnkCYTrPRjbVrBf-9md9GjMDDDO-988BByQuGKApXXL8CBpgCKnQO7AKAiS8Uemf7KE3IYwgcASA78gEwoE7lkRTYlT4uxdabBdjB10qB9N20VmpB0PvmqwhjFbqi6NnE4oI3VzVpxWIfLxGJdh8S0LvFju-mFI7LvTR3weJdn5G1x9zp_SJfP94_z22VquVJDWlK0vmQZWmDOcbQCqbNQMlnmygN3PLemUAxzULSwaITMraWFy5w3Jc_5jJxt96767nPEMOimCvEf02I3Bp0zlXElsn-NVEkpMxWNYmu0fRdCj16v-qox_bemoCNlvaGsI04N64iUtVjPne4OjGWD7m9qh5j_AFGxe1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18666484</pqid></control><display><type>article</type><title>Fundamental mechanisms of visual motion detection: models, cells and functions</title><source>ScienceDirect Journals</source><creator>Clifford, C W G ; Ibbotson, M R</creator><creatorcontrib>Clifford, C W G ; Ibbotson, M R</creatorcontrib><description>Taking a comparative approach, data from a range of visual species are discussed in the context of ideas about mechanisms of motion detection. The cellular basis of motion detection in the vertebrate retina, sub-cortical structures and visual cortex is reviewed alongside that of the insect optic lobes. Special care is taken to relate concepts from theoretical models to the neural circuitry in biological systems. Motion detection involves spatiotemporal pre-filters, temporal delay filters and non-linear interactions. A number of different types of non-linear mechanism such as facilitation, inhibition and division have been proposed to underlie direction selectivity. The resulting direction-selective mechanisms can be combined to produce speed-tuned motion detectors. Motion detection is a dynamic process with adaptation as a fundamental property. The behavior of adaptive mechanisms in motion detection is discussed, focusing on the informational basis of motion adaptation, its phenomenology in human vision, and its cellular basis. The question of whether motion adaptation serves a function or is simply the result of neural fatigue is critically addressed.</description><identifier>ISSN: 0301-0082</identifier><identifier>DOI: 10.1016/S0301-0082(02)00154-5</identifier><identifier>PMID: 12576294</identifier><language>eng</language><publisher>England</publisher><subject>Adaptation, Physiological - physiology ; Animals ; Humans ; Insecta ; Models, Biological ; Models, Neurological ; Motion Perception - physiology ; Nerve Net - physiology ; Neurons - physiology ; Optic Lobe, Nonmammalian - physiology ; Pattern Recognition, Visual - physiology ; Retina - physiology ; Retinal Ganglion Cells - physiology ; Species Specificity ; Visual Cortex - physiology ; Visual Perception - physiology</subject><ispartof>Progress in neurobiology, 2002-12, Vol.68 (6), p.409-437</ispartof><rights>Crown Copyright 2003 Published by Elsevier Science Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-b1ecfb24ec02dd3ec5e1dc0b26b78f03d37ca982e70819cea567cc19d4dfab373</citedby><cites>FETCH-LOGICAL-c388t-b1ecfb24ec02dd3ec5e1dc0b26b78f03d37ca982e70819cea567cc19d4dfab373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12576294$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Clifford, C W G</creatorcontrib><creatorcontrib>Ibbotson, M R</creatorcontrib><title>Fundamental mechanisms of visual motion detection: models, cells and functions</title><title>Progress in neurobiology</title><addtitle>Prog Neurobiol</addtitle><description>Taking a comparative approach, data from a range of visual species are discussed in the context of ideas about mechanisms of motion detection. The cellular basis of motion detection in the vertebrate retina, sub-cortical structures and visual cortex is reviewed alongside that of the insect optic lobes. Special care is taken to relate concepts from theoretical models to the neural circuitry in biological systems. Motion detection involves spatiotemporal pre-filters, temporal delay filters and non-linear interactions. A number of different types of non-linear mechanism such as facilitation, inhibition and division have been proposed to underlie direction selectivity. The resulting direction-selective mechanisms can be combined to produce speed-tuned motion detectors. Motion detection is a dynamic process with adaptation as a fundamental property. The behavior of adaptive mechanisms in motion detection is discussed, focusing on the informational basis of motion adaptation, its phenomenology in human vision, and its cellular basis. The question of whether motion adaptation serves a function or is simply the result of neural fatigue is critically addressed.</description><subject>Adaptation, Physiological - physiology</subject><subject>Animals</subject><subject>Humans</subject><subject>Insecta</subject><subject>Models, Biological</subject><subject>Models, Neurological</subject><subject>Motion Perception - physiology</subject><subject>Nerve Net - physiology</subject><subject>Neurons - physiology</subject><subject>Optic Lobe, Nonmammalian - physiology</subject><subject>Pattern Recognition, Visual - physiology</subject><subject>Retina - physiology</subject><subject>Retinal Ganglion Cells - physiology</subject><subject>Species Specificity</subject><subject>Visual Cortex - physiology</subject><subject>Visual Perception - physiology</subject><issn>0301-0082</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhnNQ3HX1Jyg9iYLVSdKkqTdZXBUWPajnkCYTrPRjbVrBf-9md9GjMDDDO-988BByQuGKApXXL8CBpgCKnQO7AKAiS8Uemf7KE3IYwgcASA78gEwoE7lkRTYlT4uxdabBdjB10qB9N20VmpB0PvmqwhjFbqi6NnE4oI3VzVpxWIfLxGJdh8S0LvFju-mFI7LvTR3weJdn5G1x9zp_SJfP94_z22VquVJDWlK0vmQZWmDOcbQCqbNQMlnmygN3PLemUAxzULSwaITMraWFy5w3Jc_5jJxt96767nPEMOimCvEf02I3Bp0zlXElsn-NVEkpMxWNYmu0fRdCj16v-qox_bemoCNlvaGsI04N64iUtVjPne4OjGWD7m9qh5j_AFGxe1w</recordid><startdate>20021201</startdate><enddate>20021201</enddate><creator>Clifford, C W G</creator><creator>Ibbotson, M R</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20021201</creationdate><title>Fundamental mechanisms of visual motion detection: models, cells and functions</title><author>Clifford, C W G ; Ibbotson, M R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-b1ecfb24ec02dd3ec5e1dc0b26b78f03d37ca982e70819cea567cc19d4dfab373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Adaptation, Physiological - physiology</topic><topic>Animals</topic><topic>Humans</topic><topic>Insecta</topic><topic>Models, Biological</topic><topic>Models, Neurological</topic><topic>Motion Perception - physiology</topic><topic>Nerve Net - physiology</topic><topic>Neurons - physiology</topic><topic>Optic Lobe, Nonmammalian - physiology</topic><topic>Pattern Recognition, Visual - physiology</topic><topic>Retina - physiology</topic><topic>Retinal Ganglion Cells - physiology</topic><topic>Species Specificity</topic><topic>Visual Cortex - physiology</topic><topic>Visual Perception - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clifford, C W G</creatorcontrib><creatorcontrib>Ibbotson, M R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Progress in neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clifford, C W G</au><au>Ibbotson, M R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fundamental mechanisms of visual motion detection: models, cells and functions</atitle><jtitle>Progress in neurobiology</jtitle><addtitle>Prog Neurobiol</addtitle><date>2002-12-01</date><risdate>2002</risdate><volume>68</volume><issue>6</issue><spage>409</spage><epage>437</epage><pages>409-437</pages><issn>0301-0082</issn><abstract>Taking a comparative approach, data from a range of visual species are discussed in the context of ideas about mechanisms of motion detection. The cellular basis of motion detection in the vertebrate retina, sub-cortical structures and visual cortex is reviewed alongside that of the insect optic lobes. Special care is taken to relate concepts from theoretical models to the neural circuitry in biological systems. Motion detection involves spatiotemporal pre-filters, temporal delay filters and non-linear interactions. A number of different types of non-linear mechanism such as facilitation, inhibition and division have been proposed to underlie direction selectivity. The resulting direction-selective mechanisms can be combined to produce speed-tuned motion detectors. Motion detection is a dynamic process with adaptation as a fundamental property. The behavior of adaptive mechanisms in motion detection is discussed, focusing on the informational basis of motion adaptation, its phenomenology in human vision, and its cellular basis. The question of whether motion adaptation serves a function or is simply the result of neural fatigue is critically addressed.</abstract><cop>England</cop><pmid>12576294</pmid><doi>10.1016/S0301-0082(02)00154-5</doi><tpages>29</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-0082 |
ispartof | Progress in neurobiology, 2002-12, Vol.68 (6), p.409-437 |
issn | 0301-0082 |
language | eng |
recordid | cdi_proquest_miscellaneous_72843854 |
source | ScienceDirect Journals |
subjects | Adaptation, Physiological - physiology Animals Humans Insecta Models, Biological Models, Neurological Motion Perception - physiology Nerve Net - physiology Neurons - physiology Optic Lobe, Nonmammalian - physiology Pattern Recognition, Visual - physiology Retina - physiology Retinal Ganglion Cells - physiology Species Specificity Visual Cortex - physiology Visual Perception - physiology |
title | Fundamental mechanisms of visual motion detection: models, cells and functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A45%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fundamental%20mechanisms%20of%20visual%20motion%20detection:%20models,%20cells%20and%20functions&rft.jtitle=Progress%20in%20neurobiology&rft.au=Clifford,%20C%20W%20G&rft.date=2002-12-01&rft.volume=68&rft.issue=6&rft.spage=409&rft.epage=437&rft.pages=409-437&rft.issn=0301-0082&rft_id=info:doi/10.1016/S0301-0082(02)00154-5&rft_dat=%3Cproquest_cross%3E18666484%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-b1ecfb24ec02dd3ec5e1dc0b26b78f03d37ca982e70819cea567cc19d4dfab373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=18666484&rft_id=info:pmid/12576294&rfr_iscdi=true |