Loading…

Fundamental mechanisms of visual motion detection: models, cells and functions

Taking a comparative approach, data from a range of visual species are discussed in the context of ideas about mechanisms of motion detection. The cellular basis of motion detection in the vertebrate retina, sub-cortical structures and visual cortex is reviewed alongside that of the insect optic lob...

Full description

Saved in:
Bibliographic Details
Published in:Progress in neurobiology 2002-12, Vol.68 (6), p.409-437
Main Authors: Clifford, C W G, Ibbotson, M R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c388t-b1ecfb24ec02dd3ec5e1dc0b26b78f03d37ca982e70819cea567cc19d4dfab373
cites cdi_FETCH-LOGICAL-c388t-b1ecfb24ec02dd3ec5e1dc0b26b78f03d37ca982e70819cea567cc19d4dfab373
container_end_page 437
container_issue 6
container_start_page 409
container_title Progress in neurobiology
container_volume 68
creator Clifford, C W G
Ibbotson, M R
description Taking a comparative approach, data from a range of visual species are discussed in the context of ideas about mechanisms of motion detection. The cellular basis of motion detection in the vertebrate retina, sub-cortical structures and visual cortex is reviewed alongside that of the insect optic lobes. Special care is taken to relate concepts from theoretical models to the neural circuitry in biological systems. Motion detection involves spatiotemporal pre-filters, temporal delay filters and non-linear interactions. A number of different types of non-linear mechanism such as facilitation, inhibition and division have been proposed to underlie direction selectivity. The resulting direction-selective mechanisms can be combined to produce speed-tuned motion detectors. Motion detection is a dynamic process with adaptation as a fundamental property. The behavior of adaptive mechanisms in motion detection is discussed, focusing on the informational basis of motion adaptation, its phenomenology in human vision, and its cellular basis. The question of whether motion adaptation serves a function or is simply the result of neural fatigue is critically addressed.
doi_str_mv 10.1016/S0301-0082(02)00154-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72843854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18666484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-b1ecfb24ec02dd3ec5e1dc0b26b78f03d37ca982e70819cea567cc19d4dfab373</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhnNQ3HX1Jyg9iYLVSdKkqTdZXBUWPajnkCYTrPRjbVrBf-9md9GjMDDDO-988BByQuGKApXXL8CBpgCKnQO7AKAiS8Uemf7KE3IYwgcASA78gEwoE7lkRTYlT4uxdabBdjB10qB9N20VmpB0PvmqwhjFbqi6NnE4oI3VzVpxWIfLxGJdh8S0LvFju-mFI7LvTR3weJdn5G1x9zp_SJfP94_z22VquVJDWlK0vmQZWmDOcbQCqbNQMlnmygN3PLemUAxzULSwaITMraWFy5w3Jc_5jJxt96767nPEMOimCvEf02I3Bp0zlXElsn-NVEkpMxWNYmu0fRdCj16v-qox_bemoCNlvaGsI04N64iUtVjPne4OjGWD7m9qh5j_AFGxe1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18666484</pqid></control><display><type>article</type><title>Fundamental mechanisms of visual motion detection: models, cells and functions</title><source>ScienceDirect Journals</source><creator>Clifford, C W G ; Ibbotson, M R</creator><creatorcontrib>Clifford, C W G ; Ibbotson, M R</creatorcontrib><description>Taking a comparative approach, data from a range of visual species are discussed in the context of ideas about mechanisms of motion detection. The cellular basis of motion detection in the vertebrate retina, sub-cortical structures and visual cortex is reviewed alongside that of the insect optic lobes. Special care is taken to relate concepts from theoretical models to the neural circuitry in biological systems. Motion detection involves spatiotemporal pre-filters, temporal delay filters and non-linear interactions. A number of different types of non-linear mechanism such as facilitation, inhibition and division have been proposed to underlie direction selectivity. The resulting direction-selective mechanisms can be combined to produce speed-tuned motion detectors. Motion detection is a dynamic process with adaptation as a fundamental property. The behavior of adaptive mechanisms in motion detection is discussed, focusing on the informational basis of motion adaptation, its phenomenology in human vision, and its cellular basis. The question of whether motion adaptation serves a function or is simply the result of neural fatigue is critically addressed.</description><identifier>ISSN: 0301-0082</identifier><identifier>DOI: 10.1016/S0301-0082(02)00154-5</identifier><identifier>PMID: 12576294</identifier><language>eng</language><publisher>England</publisher><subject>Adaptation, Physiological - physiology ; Animals ; Humans ; Insecta ; Models, Biological ; Models, Neurological ; Motion Perception - physiology ; Nerve Net - physiology ; Neurons - physiology ; Optic Lobe, Nonmammalian - physiology ; Pattern Recognition, Visual - physiology ; Retina - physiology ; Retinal Ganglion Cells - physiology ; Species Specificity ; Visual Cortex - physiology ; Visual Perception - physiology</subject><ispartof>Progress in neurobiology, 2002-12, Vol.68 (6), p.409-437</ispartof><rights>Crown Copyright 2003 Published by Elsevier Science Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-b1ecfb24ec02dd3ec5e1dc0b26b78f03d37ca982e70819cea567cc19d4dfab373</citedby><cites>FETCH-LOGICAL-c388t-b1ecfb24ec02dd3ec5e1dc0b26b78f03d37ca982e70819cea567cc19d4dfab373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12576294$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Clifford, C W G</creatorcontrib><creatorcontrib>Ibbotson, M R</creatorcontrib><title>Fundamental mechanisms of visual motion detection: models, cells and functions</title><title>Progress in neurobiology</title><addtitle>Prog Neurobiol</addtitle><description>Taking a comparative approach, data from a range of visual species are discussed in the context of ideas about mechanisms of motion detection. The cellular basis of motion detection in the vertebrate retina, sub-cortical structures and visual cortex is reviewed alongside that of the insect optic lobes. Special care is taken to relate concepts from theoretical models to the neural circuitry in biological systems. Motion detection involves spatiotemporal pre-filters, temporal delay filters and non-linear interactions. A number of different types of non-linear mechanism such as facilitation, inhibition and division have been proposed to underlie direction selectivity. The resulting direction-selective mechanisms can be combined to produce speed-tuned motion detectors. Motion detection is a dynamic process with adaptation as a fundamental property. The behavior of adaptive mechanisms in motion detection is discussed, focusing on the informational basis of motion adaptation, its phenomenology in human vision, and its cellular basis. The question of whether motion adaptation serves a function or is simply the result of neural fatigue is critically addressed.</description><subject>Adaptation, Physiological - physiology</subject><subject>Animals</subject><subject>Humans</subject><subject>Insecta</subject><subject>Models, Biological</subject><subject>Models, Neurological</subject><subject>Motion Perception - physiology</subject><subject>Nerve Net - physiology</subject><subject>Neurons - physiology</subject><subject>Optic Lobe, Nonmammalian - physiology</subject><subject>Pattern Recognition, Visual - physiology</subject><subject>Retina - physiology</subject><subject>Retinal Ganglion Cells - physiology</subject><subject>Species Specificity</subject><subject>Visual Cortex - physiology</subject><subject>Visual Perception - physiology</subject><issn>0301-0082</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhnNQ3HX1Jyg9iYLVSdKkqTdZXBUWPajnkCYTrPRjbVrBf-9md9GjMDDDO-988BByQuGKApXXL8CBpgCKnQO7AKAiS8Uemf7KE3IYwgcASA78gEwoE7lkRTYlT4uxdabBdjB10qB9N20VmpB0PvmqwhjFbqi6NnE4oI3VzVpxWIfLxGJdh8S0LvFju-mFI7LvTR3weJdn5G1x9zp_SJfP94_z22VquVJDWlK0vmQZWmDOcbQCqbNQMlnmygN3PLemUAxzULSwaITMraWFy5w3Jc_5jJxt96767nPEMOimCvEf02I3Bp0zlXElsn-NVEkpMxWNYmu0fRdCj16v-qox_bemoCNlvaGsI04N64iUtVjPne4OjGWD7m9qh5j_AFGxe1w</recordid><startdate>20021201</startdate><enddate>20021201</enddate><creator>Clifford, C W G</creator><creator>Ibbotson, M R</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20021201</creationdate><title>Fundamental mechanisms of visual motion detection: models, cells and functions</title><author>Clifford, C W G ; Ibbotson, M R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-b1ecfb24ec02dd3ec5e1dc0b26b78f03d37ca982e70819cea567cc19d4dfab373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Adaptation, Physiological - physiology</topic><topic>Animals</topic><topic>Humans</topic><topic>Insecta</topic><topic>Models, Biological</topic><topic>Models, Neurological</topic><topic>Motion Perception - physiology</topic><topic>Nerve Net - physiology</topic><topic>Neurons - physiology</topic><topic>Optic Lobe, Nonmammalian - physiology</topic><topic>Pattern Recognition, Visual - physiology</topic><topic>Retina - physiology</topic><topic>Retinal Ganglion Cells - physiology</topic><topic>Species Specificity</topic><topic>Visual Cortex - physiology</topic><topic>Visual Perception - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clifford, C W G</creatorcontrib><creatorcontrib>Ibbotson, M R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Progress in neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clifford, C W G</au><au>Ibbotson, M R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fundamental mechanisms of visual motion detection: models, cells and functions</atitle><jtitle>Progress in neurobiology</jtitle><addtitle>Prog Neurobiol</addtitle><date>2002-12-01</date><risdate>2002</risdate><volume>68</volume><issue>6</issue><spage>409</spage><epage>437</epage><pages>409-437</pages><issn>0301-0082</issn><abstract>Taking a comparative approach, data from a range of visual species are discussed in the context of ideas about mechanisms of motion detection. The cellular basis of motion detection in the vertebrate retina, sub-cortical structures and visual cortex is reviewed alongside that of the insect optic lobes. Special care is taken to relate concepts from theoretical models to the neural circuitry in biological systems. Motion detection involves spatiotemporal pre-filters, temporal delay filters and non-linear interactions. A number of different types of non-linear mechanism such as facilitation, inhibition and division have been proposed to underlie direction selectivity. The resulting direction-selective mechanisms can be combined to produce speed-tuned motion detectors. Motion detection is a dynamic process with adaptation as a fundamental property. The behavior of adaptive mechanisms in motion detection is discussed, focusing on the informational basis of motion adaptation, its phenomenology in human vision, and its cellular basis. The question of whether motion adaptation serves a function or is simply the result of neural fatigue is critically addressed.</abstract><cop>England</cop><pmid>12576294</pmid><doi>10.1016/S0301-0082(02)00154-5</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0301-0082
ispartof Progress in neurobiology, 2002-12, Vol.68 (6), p.409-437
issn 0301-0082
language eng
recordid cdi_proquest_miscellaneous_72843854
source ScienceDirect Journals
subjects Adaptation, Physiological - physiology
Animals
Humans
Insecta
Models, Biological
Models, Neurological
Motion Perception - physiology
Nerve Net - physiology
Neurons - physiology
Optic Lobe, Nonmammalian - physiology
Pattern Recognition, Visual - physiology
Retina - physiology
Retinal Ganglion Cells - physiology
Species Specificity
Visual Cortex - physiology
Visual Perception - physiology
title Fundamental mechanisms of visual motion detection: models, cells and functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A45%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fundamental%20mechanisms%20of%20visual%20motion%20detection:%20models,%20cells%20and%20functions&rft.jtitle=Progress%20in%20neurobiology&rft.au=Clifford,%20C%20W%20G&rft.date=2002-12-01&rft.volume=68&rft.issue=6&rft.spage=409&rft.epage=437&rft.pages=409-437&rft.issn=0301-0082&rft_id=info:doi/10.1016/S0301-0082(02)00154-5&rft_dat=%3Cproquest_cross%3E18666484%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-b1ecfb24ec02dd3ec5e1dc0b26b78f03d37ca982e70819cea567cc19d4dfab373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=18666484&rft_id=info:pmid/12576294&rfr_iscdi=true