Loading…

Epitopes on CA 125 from cervical mucus and ascites fluid and characterization of six new antibodies. Third report from the ISOBM TD-1 workshop

CA 125 is found in body fluids in a variety of molecular weight forms. The largest species are found in normal abdominal fluid and cervical mucus. The present study therefore incorporated CA 125 derived from these sources as well as ascites fluid to investigate if the source of CA 125 influenced epi...

Full description

Saved in:
Bibliographic Details
Published in:Tumor biology 2002-09, Vol.23 (5), p.303-314
Main Authors: Nustad, K, Lebedin, Y, Lloyd, K O, Shigemasa, K, de Bruijn, H W A, Jansson, B, Nilsson, O, Olsen, K H, O'Brien, T J
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:CA 125 is found in body fluids in a variety of molecular weight forms. The largest species are found in normal abdominal fluid and cervical mucus. The present study therefore incorporated CA 125 derived from these sources as well as ascites fluid to investigate if the source of CA 125 influenced epitope characterization. Ascites-derived CA 125 varied in size from about 190 to about 2,700 kD. Cervical mucus-derived CA 125 treated with ultrasound changed its apparent size from more than 20,000 to 700 kD. Epitope mapping of antibodies was not grossly influenced by the size or source of CA 125 used as target. However, low-molecular-weight CA 125, i.e. ascites fractions CA 17/E, CA 17/F and CA 10/7, did show differences in certain assay combinations and cross-inhibition patterns which probably can be explained by steric effects due to the smaller size compared with the most abundant forms of CA 125 present in serum and other body fluids. The specificity of six new monoclonal antibodies to CA 125 was tested by cross-inhibition and immunometric assay combinations and compared to reference antibodies. One antibody, X306, belonged to the OC125-like antibodies. Four antibodies, X52, X75, X325 and VK8, were M11-like. The sixth antibody, 7C12, reacted with an epitope which was difficult to define. This antibody was inhibited by M11-like antibodies and OV197. However, used as an inhibitor, 7C12 inhibited only itself. We grouped it as an OV197-like antibody, but clearly different from OV197. The topography of epitopes was studied by analyzing all antibody pairs in immunoradiometric assays. These results confirmed the grouping of antibodies described above and are in accordance with previous findings that the highest signal is obtained using an OC125-like antibody or OV197 on the solid phase and an M11-like antibody as tracer. The composition of the sample in terms of high- and low-molecular-weight species of CA 125 was measured, with different responses depending on the antibody pair used. This might be one reason for discrepancies between assay results for CA 125 using different assays.
ISSN:1010-4283
1423-0380
DOI:10.1159/000068570