Loading…

Effects of different buffers on the thermostability and autolysis of a cold-adapted protease MCP-01

A cold-adapted protease MCP-01 was obtained from deep-sea psychrotrophic bacterium Pseudoaltermonas sp. SM9913. The effects of four different buffers, all at 50 mmol/l concentration, on its thermostability and autolysis were studied. The autolysis process of MCP-01 was studied by capillary electroph...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Protein Chemistry 2002-11, Vol.21 (8), p.523-527
Main Authors: Chen, Xiu-Lan, Sun, Cai-Yun, Zhang, Yu-Zhong, Gao, Pei-Ji
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A cold-adapted protease MCP-01 was obtained from deep-sea psychrotrophic bacterium Pseudoaltermonas sp. SM9913. The effects of four different buffers, all at 50 mmol/l concentration, on its thermostability and autolysis were studied. The autolysis process of MCP-01 was studied by capillary electrophoresis. The thermostability of MCP-01 increased successively in the following order: carbonate < Tris < phosphate < borate. The optimum temperature for casein hydrolysis also increased in the same order. This suggested that the conformation of MCP-01 was flexible and its autolytic susceptibility was affected by some factors in the buffers such as charge and ionic species. The results also showed that different buffers, in addition to affecting the autolysis speed, gave different patterns of autolysis products. In carbonate buffer, Tris buffer, phosphate buffer and borate buffer, the autolysis patterns of MCP-01 were different. These results suggested that protease MCP-01 probably have different conformations in different buffers, thus exposing different autolysis sites on the enzyme surface. In addition, the loss of activity correlated with the speed of autolysis in the four different buffers, showing that autolysis may be a reason for the low thermostability of the enzyme.
ISSN:0277-8033
1572-3887
1573-4943
DOI:10.1023/a:1022425621742