Loading…
Sequence instability and functional inactivation of murine Y chromosomes can occur on a specific genetic background
When the Y chromosome from Mus. poschiavinus (YPos) is backcrossed onto the C57BL/6J laboratory strain, testicular dysfunction occurs at high frequencies. When five different multicopy probes from the recombinationally suppressed region of the Y chromosome were used, genomic DNAs from sibling female...
Saved in:
Published in: | Molecular biology and evolution 1992-03, Vol.9 (2), p.331-365 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | When the Y chromosome from Mus. poschiavinus (YPos) is backcrossed onto the C57BL/6J laboratory strain, testicular dysfunction occurs at high frequencies. When five different multicopy probes from the recombinationally suppressed region of the Y chromosome were used, genomic DNAs from sibling female progeny of C57BL/6J YPos males were found to contain YPos-specific sequences ranging from trace levels to levels consistent with an intact Y chromosome. Females with a high copy number of YPos-specific sequences had a karyotype of XYPos and were sterile. Females with trace levels of these sequences were XX and fertile. Repeated sequences in the testis-determining-region (Sxr) of inactive YPos chromosomes were unstable relative to sequences in non-Sxr regions. In contrast, the YPos chromosome was stable and functioned normally in other inbred laboratory strains such as 129/Sv. The frequency and extent of YPos chromosome instability increased with successive backcrosses from stable (129/Sv) to unstable (C57BL/6J) genetic backgrounds. Traces of YPos-specific sequences were first detected in N2 female offspring of F1 males. Therefore, sequences were deleted from YPos chromosomes in the F1 male germ line and were transmitted to N2 females; inactive YPos chromosomes (XYPos females) were first detected in the N3 generation. The mouse line being derived by backcrossing the YPos chromosome onto C57BL/6J inbred strains ended in the N7 generation, since all XYPos offspring were sterile. Even stable repeated sequences from the non-Sxr regions of their inactive YPos chromosomes were precisely rearranged in these N7 offspring at high frequencies. These data are consistent with hybrid dysgenesis in mammals. |
---|---|
ISSN: | 0737-4038 1537-1719 1537-1719 |
DOI: | 10.1093/oxfordjournals.molbev.a040724 |