Loading…

Green tea catechins inhibit the cultured smooth muscle cell invasion through the basement barrier

Epidemiological studies suggest that green tea consumption is associated with a reduced risk of cardiovascular disease. Antioxidative properties of green tea flavonoids, catechins, have been believed to be involved in the antiatherogenic effect of green tea, since catechins inhibit low density lipop...

Full description

Saved in:
Bibliographic Details
Published in:Atherosclerosis 2003, Vol.166 (1), p.23-30
Main Authors: Maeda, Keiko, Kuzuya, Masafumi, Cheng, Xian Wu, Asai, Toshinobu, Kanda, Shigeru, Tamaya-Mori, Norika, Sasaki, Takeshi, Shibata, Tami, Iguchi, Akihisa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Epidemiological studies suggest that green tea consumption is associated with a reduced risk of cardiovascular disease. Antioxidative properties of green tea flavonoids, catechins, have been believed to be involved in the antiatherogenic effect of green tea, since catechins inhibit low density lipoprotein oxidation. The migration of vascular smooth muscle cells (SMCs) from the tunica media to the subendothelial region is a key event in the development and progression of atherosclerosis and post-angioplasty vascular remodeling. Matrix metalloproteinases (MMPs) play a key role in these processes of SMC migration. In the present study, we investigated the effect of catechins on the gelatinolytic activity of MMP-2 that was derived from cultured bovine aortic SMCs. We also investigated the effect of catechins on the SMC invasion through the reconstituted basement membrane barrier. A major constituent of green tea catechins, (−)-epigallocatechin gallate (EGCG), inhibited the gelatinolytic activity of MMP-2 and concanavalin A (ConA)-induced pro-MMP-2 activation without the influence of membrane-type MMP expression in SMCs. EGCG also inhibited the SMC invasion through the basement membrane barrier in a concentration-dependent manner without any influence of SMC migration across the basement membrane protein thin-coated filter. The antagonistic effects of other catechins, namely (−)-epigallocatechin (EGC) and (−)-epicatechin gallate (ECG), on gelatinolytic activity of MMP-2, ConA-induced pro-MMP-2 activation, or PDGF-BB-directed SMC invasion were much less pronounced than those of EGCG. Also, (+)-catechin and (−)-epicatechin failed to show any effect. These findings may suggest that the anti-invasive and anti-metalloproteinase activities involve at least part of the anti-atherogenic action of catechin in accordance with the antioxidant properties of catechin.
ISSN:0021-9150
1879-1484
DOI:10.1016/S0021-9150(02)00302-7