Loading…
Contributions of space experiments to the study of gravitropism
The study of gravitropism in space has permitted the discovery that statoliths are not completely free to sediment in the gravisensing cells of roots. These organelles are attached to actin filaments via motor proteins (myosin) which are responsible for their displacement from the distal pole of the...
Saved in:
Published in: | Journal of plant growth regulation 2002-06, Vol.21 (2), p.156-165 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The study of gravitropism in space has permitted the discovery that statoliths are not completely free to sediment in the gravisensing cells of roots. These organelles are attached to actin filaments via motor proteins (myosin) which are responsible for their displacement from the distal pole of the cell toward the proximal pole when the seedlings are transferred from a 1g centrifuge in space to microgravity. On the ground, the existence of the link between the statoliths and the actin network could not be established because the gravity force is much greater than the force exerted by the motor proteins. This finding led to a new hypothesis on gravisensing. It has been proposed that statoliths can exert tensions in the actin network which become asymmetrical when the root is stimulated in the horizontal position on the ground. The space experiments have confirmed to some extent the results obtained on gravisensitivity with clinostats, although these devices do not simulate microgravity correctly. Reexamination of the means of estimating gravisensitivity has led to the conclusion that the perception and the transduction phases could be very short (that is, within a second). This data is consistent with the fact that the statoliths are attached to the actin filament and do not have to move a long distance to exert forces on the actin network. It has also been demonstrated that gravity regulates the gravitropic bending in order to avoid the overshooting of the vertical direction on the ground. The roots, which are stimulated and placed in microgravity, are not subjected to this regulation and curve more than roots stimulated continuously. However, the curvature of roots or of coleoptiles that takes place in microgravity can be greatly reduced by straightening the extremity of the organs. |
---|---|
ISSN: | 0721-7595 1435-8107 |
DOI: | 10.1007/s003440010055 |