Loading…

Mass spectrometry of mRNA cap 4 from trypanosomatids reveals two novel nucleosides

Synthesis of mRNA in kinetoplastid protozoa involves the process of trans-splicing, in which an identical 39-41-nucleotide (depending on the species) mini-exon is placed at the 5' end of mature mRNAs. The mini-exon sequence is highly conserved among all members of the Kinetoplastida, nucleotide...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1992-05, Vol.267 (14), p.9805-9815
Main Authors: BANGS, J. D, CRAIN, P. F, HASHIZUME, T, MCCLOSKEY, J. A, BOOTHROYD, J. C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Synthesis of mRNA in kinetoplastid protozoa involves the process of trans-splicing, in which an identical 39-41-nucleotide (depending on the species) mini-exon is placed at the 5' end of mature mRNAs. The mini-exon sequence is highly conserved among all members of the Kinetoplastida, nucleotides 1-6 being identical in the four genera so far examined. Prior to trans-splicing, the mini-exon donor RNA is capped by the addition of a (5'-5') triphosphate-linked 7-methylguanosine, followed by modification of the first four transcribed nucleotides. Partial structures have been previously deduced for this cap 4 moiety from Trypanosoma brucei and Leptomonas collosoma. We have purified enough cap 4 from T. brucei and Crithidia fasciculata to allow definitive structural analysis by combined liquid chromatography/mass spectrometry and gas chromatography/mass spectrometry. The results, together with the known mini-exon sequence, show that cap 4 in both species has the structure m7G(5')ppp(5')m6(2)AmpAmpCmpm3Ump. The presence of N6,N6,2'-O-trimethyladenosine and 3,2'-O-dimethyluridine, nucleosides previously unknown in nature, were confirmed by rigorous comparison with synthetic standards. The conservation of cap 4 between these divergent genera suggests that this structure may be common to most if not all Kinetoplastida.
ISSN:0021-9258
1083-351X
DOI:10.1016/s0021-9258(19)50165-x