Loading…
On Bias in the Estimation of Autocorrelations for fMRI Voxel Time-Series Analysis
For fMRI time-series analysis to be statistically valid, it is important to deal correctly with temporal autocorrelation in the noise. Most of the approaches in the literature adopt a two-stage approach in which the autocorrelation structure is estimated using the residuals of an initial model fit....
Saved in:
Published in: | NeuroImage (Orlando, Fla.) Fla.), 2003, Vol.18 (1), p.83-90 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-85a8e4845baba9ae60fb140ef358fec67f9ef2fb38483c1bbe79ebf2a2a259cd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-85a8e4845baba9ae60fb140ef358fec67f9ef2fb38483c1bbe79ebf2a2a259cd3 |
container_end_page | 90 |
container_issue | 1 |
container_start_page | 83 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 18 |
creator | Marchini, Jonathan L. Smith, Stephen M. |
description | For fMRI time-series analysis to be statistically valid, it is important to deal correctly with temporal autocorrelation in the noise. Most of the approaches in the literature adopt a two-stage approach in which the autocorrelation structure is estimated using the residuals of an initial model fit. This estimate is then used to “prewhiten” the data and the model before the model is refit to obtain final activation parameter estimates. An assumption implicit in this scheme is that the residuals from the initial model fit represent a realization of the “true” noise process. In general this assumption will not be correct as certain components of the noise will be removed by the model fit. In this paper we examine (i) the form of the bias induced by the initial model fit, (ii) methods of correcting for the bias, and (iii) the impact of bias correction on the model parameter estimates. We find that while bias correction does result in more accurate estimates of the correlation structure, this does not translate into improved estimates of the model parameters. In fact estimates of the model parameters and their standard errors are seen to be so accurate that we conclude that bias correction is unnecessary. |
doi_str_mv | 10.1006/nimg.2002.1321 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72937807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811902913212</els_id><sourcerecordid>72937807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-85a8e4845baba9ae60fb140ef358fec67f9ef2fb38483c1bbe79ebf2a2a259cd3</originalsourceid><addsrcrecordid>eNp1kMtLxDAQh4Movq8eJSB465pH0ybHVXyBsqir15BmJxppG01a0f_e1l0QBJnDDMM3P4YPoQNKJpSQ4qT1zfOEEcImlDO6hrYpUSJTomTr4yx4JilVW2gnpVdCiKK53ERblAlS5nmxje5mLT71JmHf4u4F8HnqfGM6H1ocHJ72XbAhRqh_Vgm7ELG7vb_GT-ETajz3DWQPED0kPG1N_ZV82kMbztQJ9ld9Fz1enM_PrrKb2eX12fQms7yQXSaFkZDLXFSmMspAQVxFcwKOC-nAFqVT4JiruMwlt7SqoFRQOWaGEsou-C46Xua-xfDeQ-p045OFujYthD7pkileSlIO4NEf8DX0cfg2aSpIIVTJGRuoyZKyMaQUwem3OJiIX5oSParWo2o9qtaj6uHgcBXbVw0sfvGV2wGQSwAGCx8eok7WQ2th4SPYTi-C_y_7GyyTjPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506597322</pqid></control><display><type>article</type><title>On Bias in the Estimation of Autocorrelations for fMRI Voxel Time-Series Analysis</title><source>ScienceDirect Freedom Collection</source><creator>Marchini, Jonathan L. ; Smith, Stephen M.</creator><creatorcontrib>Marchini, Jonathan L. ; Smith, Stephen M.</creatorcontrib><description>For fMRI time-series analysis to be statistically valid, it is important to deal correctly with temporal autocorrelation in the noise. Most of the approaches in the literature adopt a two-stage approach in which the autocorrelation structure is estimated using the residuals of an initial model fit. This estimate is then used to “prewhiten” the data and the model before the model is refit to obtain final activation parameter estimates. An assumption implicit in this scheme is that the residuals from the initial model fit represent a realization of the “true” noise process. In general this assumption will not be correct as certain components of the noise will be removed by the model fit. In this paper we examine (i) the form of the bias induced by the initial model fit, (ii) methods of correcting for the bias, and (iii) the impact of bias correction on the model parameter estimates. We find that while bias correction does result in more accurate estimates of the correlation structure, this does not translate into improved estimates of the model parameters. In fact estimates of the model parameters and their standard errors are seen to be so accurate that we conclude that bias correction is unnecessary.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1006/nimg.2002.1321</identifier><identifier>PMID: 12507446</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bias ; Fourier Analysis ; Humans ; Image Interpretation, Computer-Assisted ; Image Processing, Computer-Assisted - statistics & numerical data ; Linear Models ; Magnetic Resonance Imaging - statistics & numerical data ; Statistics as Topic ; Time Factors</subject><ispartof>NeuroImage (Orlando, Fla.), 2003, Vol.18 (1), p.83-90</ispartof><rights>2003 Elsevier Science (USA)</rights><rights>Copyright Elsevier Limited Jan 1, 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-85a8e4845baba9ae60fb140ef358fec67f9ef2fb38483c1bbe79ebf2a2a259cd3</citedby><cites>FETCH-LOGICAL-c368t-85a8e4845baba9ae60fb140ef358fec67f9ef2fb38483c1bbe79ebf2a2a259cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12507446$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marchini, Jonathan L.</creatorcontrib><creatorcontrib>Smith, Stephen M.</creatorcontrib><title>On Bias in the Estimation of Autocorrelations for fMRI Voxel Time-Series Analysis</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>For fMRI time-series analysis to be statistically valid, it is important to deal correctly with temporal autocorrelation in the noise. Most of the approaches in the literature adopt a two-stage approach in which the autocorrelation structure is estimated using the residuals of an initial model fit. This estimate is then used to “prewhiten” the data and the model before the model is refit to obtain final activation parameter estimates. An assumption implicit in this scheme is that the residuals from the initial model fit represent a realization of the “true” noise process. In general this assumption will not be correct as certain components of the noise will be removed by the model fit. In this paper we examine (i) the form of the bias induced by the initial model fit, (ii) methods of correcting for the bias, and (iii) the impact of bias correction on the model parameter estimates. We find that while bias correction does result in more accurate estimates of the correlation structure, this does not translate into improved estimates of the model parameters. In fact estimates of the model parameters and their standard errors are seen to be so accurate that we conclude that bias correction is unnecessary.</description><subject>Bias</subject><subject>Fourier Analysis</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Image Processing, Computer-Assisted - statistics & numerical data</subject><subject>Linear Models</subject><subject>Magnetic Resonance Imaging - statistics & numerical data</subject><subject>Statistics as Topic</subject><subject>Time Factors</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp1kMtLxDAQh4Movq8eJSB465pH0ybHVXyBsqir15BmJxppG01a0f_e1l0QBJnDDMM3P4YPoQNKJpSQ4qT1zfOEEcImlDO6hrYpUSJTomTr4yx4JilVW2gnpVdCiKK53ERblAlS5nmxje5mLT71JmHf4u4F8HnqfGM6H1ocHJ72XbAhRqh_Vgm7ELG7vb_GT-ETajz3DWQPED0kPG1N_ZV82kMbztQJ9ld9Fz1enM_PrrKb2eX12fQms7yQXSaFkZDLXFSmMspAQVxFcwKOC-nAFqVT4JiruMwlt7SqoFRQOWaGEsou-C46Xua-xfDeQ-p045OFujYthD7pkileSlIO4NEf8DX0cfg2aSpIIVTJGRuoyZKyMaQUwem3OJiIX5oSParWo2o9qtaj6uHgcBXbVw0sfvGV2wGQSwAGCx8eok7WQ2th4SPYTi-C_y_7GyyTjPg</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Marchini, Jonathan L.</creator><creator>Smith, Stephen M.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>2003</creationdate><title>On Bias in the Estimation of Autocorrelations for fMRI Voxel Time-Series Analysis</title><author>Marchini, Jonathan L. ; Smith, Stephen M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-85a8e4845baba9ae60fb140ef358fec67f9ef2fb38483c1bbe79ebf2a2a259cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Bias</topic><topic>Fourier Analysis</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Image Processing, Computer-Assisted - statistics & numerical data</topic><topic>Linear Models</topic><topic>Magnetic Resonance Imaging - statistics & numerical data</topic><topic>Statistics as Topic</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marchini, Jonathan L.</creatorcontrib><creatorcontrib>Smith, Stephen M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marchini, Jonathan L.</au><au>Smith, Stephen M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Bias in the Estimation of Autocorrelations for fMRI Voxel Time-Series Analysis</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2003</date><risdate>2003</risdate><volume>18</volume><issue>1</issue><spage>83</spage><epage>90</epage><pages>83-90</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>For fMRI time-series analysis to be statistically valid, it is important to deal correctly with temporal autocorrelation in the noise. Most of the approaches in the literature adopt a two-stage approach in which the autocorrelation structure is estimated using the residuals of an initial model fit. This estimate is then used to “prewhiten” the data and the model before the model is refit to obtain final activation parameter estimates. An assumption implicit in this scheme is that the residuals from the initial model fit represent a realization of the “true” noise process. In general this assumption will not be correct as certain components of the noise will be removed by the model fit. In this paper we examine (i) the form of the bias induced by the initial model fit, (ii) methods of correcting for the bias, and (iii) the impact of bias correction on the model parameter estimates. We find that while bias correction does result in more accurate estimates of the correlation structure, this does not translate into improved estimates of the model parameters. In fact estimates of the model parameters and their standard errors are seen to be so accurate that we conclude that bias correction is unnecessary.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>12507446</pmid><doi>10.1006/nimg.2002.1321</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2003, Vol.18 (1), p.83-90 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_proquest_miscellaneous_72937807 |
source | ScienceDirect Freedom Collection |
subjects | Bias Fourier Analysis Humans Image Interpretation, Computer-Assisted Image Processing, Computer-Assisted - statistics & numerical data Linear Models Magnetic Resonance Imaging - statistics & numerical data Statistics as Topic Time Factors |
title | On Bias in the Estimation of Autocorrelations for fMRI Voxel Time-Series Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A47%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Bias%20in%20the%20Estimation%20of%20Autocorrelations%20for%20fMRI%20Voxel%20Time-Series%20Analysis&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Marchini,%20Jonathan%20L.&rft.date=2003&rft.volume=18&rft.issue=1&rft.spage=83&rft.epage=90&rft.pages=83-90&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1006/nimg.2002.1321&rft_dat=%3Cproquest_cross%3E72937807%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-85a8e4845baba9ae60fb140ef358fec67f9ef2fb38483c1bbe79ebf2a2a259cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1506597322&rft_id=info:pmid/12507446&rfr_iscdi=true |