Loading…

On Bias in the Estimation of Autocorrelations for fMRI Voxel Time-Series Analysis

For fMRI time-series analysis to be statistically valid, it is important to deal correctly with temporal autocorrelation in the noise. Most of the approaches in the literature adopt a two-stage approach in which the autocorrelation structure is estimated using the residuals of an initial model fit....

Full description

Saved in:
Bibliographic Details
Published in:NeuroImage (Orlando, Fla.) Fla.), 2003, Vol.18 (1), p.83-90
Main Authors: Marchini, Jonathan L., Smith, Stephen M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-85a8e4845baba9ae60fb140ef358fec67f9ef2fb38483c1bbe79ebf2a2a259cd3
cites cdi_FETCH-LOGICAL-c368t-85a8e4845baba9ae60fb140ef358fec67f9ef2fb38483c1bbe79ebf2a2a259cd3
container_end_page 90
container_issue 1
container_start_page 83
container_title NeuroImage (Orlando, Fla.)
container_volume 18
creator Marchini, Jonathan L.
Smith, Stephen M.
description For fMRI time-series analysis to be statistically valid, it is important to deal correctly with temporal autocorrelation in the noise. Most of the approaches in the literature adopt a two-stage approach in which the autocorrelation structure is estimated using the residuals of an initial model fit. This estimate is then used to “prewhiten” the data and the model before the model is refit to obtain final activation parameter estimates. An assumption implicit in this scheme is that the residuals from the initial model fit represent a realization of the “true” noise process. In general this assumption will not be correct as certain components of the noise will be removed by the model fit. In this paper we examine (i) the form of the bias induced by the initial model fit, (ii) methods of correcting for the bias, and (iii) the impact of bias correction on the model parameter estimates. We find that while bias correction does result in more accurate estimates of the correlation structure, this does not translate into improved estimates of the model parameters. In fact estimates of the model parameters and their standard errors are seen to be so accurate that we conclude that bias correction is unnecessary.
doi_str_mv 10.1006/nimg.2002.1321
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72937807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811902913212</els_id><sourcerecordid>72937807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-85a8e4845baba9ae60fb140ef358fec67f9ef2fb38483c1bbe79ebf2a2a259cd3</originalsourceid><addsrcrecordid>eNp1kMtLxDAQh4Movq8eJSB465pH0ybHVXyBsqir15BmJxppG01a0f_e1l0QBJnDDMM3P4YPoQNKJpSQ4qT1zfOEEcImlDO6hrYpUSJTomTr4yx4JilVW2gnpVdCiKK53ERblAlS5nmxje5mLT71JmHf4u4F8HnqfGM6H1ocHJ72XbAhRqh_Vgm7ELG7vb_GT-ETajz3DWQPED0kPG1N_ZV82kMbztQJ9ld9Fz1enM_PrrKb2eX12fQms7yQXSaFkZDLXFSmMspAQVxFcwKOC-nAFqVT4JiruMwlt7SqoFRQOWaGEsou-C46Xua-xfDeQ-p045OFujYthD7pkileSlIO4NEf8DX0cfg2aSpIIVTJGRuoyZKyMaQUwem3OJiIX5oSParWo2o9qtaj6uHgcBXbVw0sfvGV2wGQSwAGCx8eok7WQ2th4SPYTi-C_y_7GyyTjPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506597322</pqid></control><display><type>article</type><title>On Bias in the Estimation of Autocorrelations for fMRI Voxel Time-Series Analysis</title><source>ScienceDirect Freedom Collection</source><creator>Marchini, Jonathan L. ; Smith, Stephen M.</creator><creatorcontrib>Marchini, Jonathan L. ; Smith, Stephen M.</creatorcontrib><description>For fMRI time-series analysis to be statistically valid, it is important to deal correctly with temporal autocorrelation in the noise. Most of the approaches in the literature adopt a two-stage approach in which the autocorrelation structure is estimated using the residuals of an initial model fit. This estimate is then used to “prewhiten” the data and the model before the model is refit to obtain final activation parameter estimates. An assumption implicit in this scheme is that the residuals from the initial model fit represent a realization of the “true” noise process. In general this assumption will not be correct as certain components of the noise will be removed by the model fit. In this paper we examine (i) the form of the bias induced by the initial model fit, (ii) methods of correcting for the bias, and (iii) the impact of bias correction on the model parameter estimates. We find that while bias correction does result in more accurate estimates of the correlation structure, this does not translate into improved estimates of the model parameters. In fact estimates of the model parameters and their standard errors are seen to be so accurate that we conclude that bias correction is unnecessary.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1006/nimg.2002.1321</identifier><identifier>PMID: 12507446</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bias ; Fourier Analysis ; Humans ; Image Interpretation, Computer-Assisted ; Image Processing, Computer-Assisted - statistics &amp; numerical data ; Linear Models ; Magnetic Resonance Imaging - statistics &amp; numerical data ; Statistics as Topic ; Time Factors</subject><ispartof>NeuroImage (Orlando, Fla.), 2003, Vol.18 (1), p.83-90</ispartof><rights>2003 Elsevier Science (USA)</rights><rights>Copyright Elsevier Limited Jan 1, 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-85a8e4845baba9ae60fb140ef358fec67f9ef2fb38483c1bbe79ebf2a2a259cd3</citedby><cites>FETCH-LOGICAL-c368t-85a8e4845baba9ae60fb140ef358fec67f9ef2fb38483c1bbe79ebf2a2a259cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12507446$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marchini, Jonathan L.</creatorcontrib><creatorcontrib>Smith, Stephen M.</creatorcontrib><title>On Bias in the Estimation of Autocorrelations for fMRI Voxel Time-Series Analysis</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>For fMRI time-series analysis to be statistically valid, it is important to deal correctly with temporal autocorrelation in the noise. Most of the approaches in the literature adopt a two-stage approach in which the autocorrelation structure is estimated using the residuals of an initial model fit. This estimate is then used to “prewhiten” the data and the model before the model is refit to obtain final activation parameter estimates. An assumption implicit in this scheme is that the residuals from the initial model fit represent a realization of the “true” noise process. In general this assumption will not be correct as certain components of the noise will be removed by the model fit. In this paper we examine (i) the form of the bias induced by the initial model fit, (ii) methods of correcting for the bias, and (iii) the impact of bias correction on the model parameter estimates. We find that while bias correction does result in more accurate estimates of the correlation structure, this does not translate into improved estimates of the model parameters. In fact estimates of the model parameters and their standard errors are seen to be so accurate that we conclude that bias correction is unnecessary.</description><subject>Bias</subject><subject>Fourier Analysis</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Image Processing, Computer-Assisted - statistics &amp; numerical data</subject><subject>Linear Models</subject><subject>Magnetic Resonance Imaging - statistics &amp; numerical data</subject><subject>Statistics as Topic</subject><subject>Time Factors</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp1kMtLxDAQh4Movq8eJSB465pH0ybHVXyBsqir15BmJxppG01a0f_e1l0QBJnDDMM3P4YPoQNKJpSQ4qT1zfOEEcImlDO6hrYpUSJTomTr4yx4JilVW2gnpVdCiKK53ERblAlS5nmxje5mLT71JmHf4u4F8HnqfGM6H1ocHJ72XbAhRqh_Vgm7ELG7vb_GT-ETajz3DWQPED0kPG1N_ZV82kMbztQJ9ld9Fz1enM_PrrKb2eX12fQms7yQXSaFkZDLXFSmMspAQVxFcwKOC-nAFqVT4JiruMwlt7SqoFRQOWaGEsou-C46Xua-xfDeQ-p045OFujYthD7pkileSlIO4NEf8DX0cfg2aSpIIVTJGRuoyZKyMaQUwem3OJiIX5oSParWo2o9qtaj6uHgcBXbVw0sfvGV2wGQSwAGCx8eok7WQ2th4SPYTi-C_y_7GyyTjPg</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Marchini, Jonathan L.</creator><creator>Smith, Stephen M.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>2003</creationdate><title>On Bias in the Estimation of Autocorrelations for fMRI Voxel Time-Series Analysis</title><author>Marchini, Jonathan L. ; Smith, Stephen M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-85a8e4845baba9ae60fb140ef358fec67f9ef2fb38483c1bbe79ebf2a2a259cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Bias</topic><topic>Fourier Analysis</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Image Processing, Computer-Assisted - statistics &amp; numerical data</topic><topic>Linear Models</topic><topic>Magnetic Resonance Imaging - statistics &amp; numerical data</topic><topic>Statistics as Topic</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marchini, Jonathan L.</creatorcontrib><creatorcontrib>Smith, Stephen M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marchini, Jonathan L.</au><au>Smith, Stephen M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Bias in the Estimation of Autocorrelations for fMRI Voxel Time-Series Analysis</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2003</date><risdate>2003</risdate><volume>18</volume><issue>1</issue><spage>83</spage><epage>90</epage><pages>83-90</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>For fMRI time-series analysis to be statistically valid, it is important to deal correctly with temporal autocorrelation in the noise. Most of the approaches in the literature adopt a two-stage approach in which the autocorrelation structure is estimated using the residuals of an initial model fit. This estimate is then used to “prewhiten” the data and the model before the model is refit to obtain final activation parameter estimates. An assumption implicit in this scheme is that the residuals from the initial model fit represent a realization of the “true” noise process. In general this assumption will not be correct as certain components of the noise will be removed by the model fit. In this paper we examine (i) the form of the bias induced by the initial model fit, (ii) methods of correcting for the bias, and (iii) the impact of bias correction on the model parameter estimates. We find that while bias correction does result in more accurate estimates of the correlation structure, this does not translate into improved estimates of the model parameters. In fact estimates of the model parameters and their standard errors are seen to be so accurate that we conclude that bias correction is unnecessary.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>12507446</pmid><doi>10.1006/nimg.2002.1321</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2003, Vol.18 (1), p.83-90
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_miscellaneous_72937807
source ScienceDirect Freedom Collection
subjects Bias
Fourier Analysis
Humans
Image Interpretation, Computer-Assisted
Image Processing, Computer-Assisted - statistics & numerical data
Linear Models
Magnetic Resonance Imaging - statistics & numerical data
Statistics as Topic
Time Factors
title On Bias in the Estimation of Autocorrelations for fMRI Voxel Time-Series Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A47%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Bias%20in%20the%20Estimation%20of%20Autocorrelations%20for%20fMRI%20Voxel%20Time-Series%20Analysis&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Marchini,%20Jonathan%20L.&rft.date=2003&rft.volume=18&rft.issue=1&rft.spage=83&rft.epage=90&rft.pages=83-90&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1006/nimg.2002.1321&rft_dat=%3Cproquest_cross%3E72937807%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-85a8e4845baba9ae60fb140ef358fec67f9ef2fb38483c1bbe79ebf2a2a259cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1506597322&rft_id=info:pmid/12507446&rfr_iscdi=true