Loading…

Development of Agrobacterium tumefaciens C58-induced plant tumors and impact on host shoots are controlled by a cascade of jasmonic acid, auxin, cytokinin, ethylene and abscisic acid

The development of Agrobacterium tumefaciens-induced plant tumors primarily depends on the excessive production of auxin and cytokinin by enzymes encoded on T-DNA genes integrated into the plant genome. The aim of the present study was to investigate the involvement of additional phytohormone signal...

Full description

Saved in:
Bibliographic Details
Published in:Planta 2003-01, Vol.216 (3), p.512-522
Main Authors: Veselov, Dmitry, Langhans, Markus, Hartung, Wolfram, Aloni, Roni, Feussner, Ivo, Götz, Claudia, Veselova, Svetlana, Schlomski, Stefan, Dickler, Christoph, Bächmann, Knut, Ullrich, Cornelia I.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The development of Agrobacterium tumefaciens-induced plant tumors primarily depends on the excessive production of auxin and cytokinin by enzymes encoded on T-DNA genes integrated into the plant genome. The aim of the present study was to investigate the involvement of additional phytohormone signals in the vascularization required for rapid tumor proliferation. In stem tumors of Ricinus communis L., free auxin and zeatin riboside concentrations increased within 2 weeks to 15-fold the concentrations in control stem tissue. Auxin and cytokinin immunolocalization revealed the highest concentrations within and around tumor vascular bundles with concentration gradients. The time-course of changes in free auxin concentration in roots was inversely correlated with that in the tumors. The high ethylene emission induced by increased auxin- and cytokinin correlated with a 36-fold accumulation of abscisic acid in tumors. Ethylene emitted from tumors and exogenously applied ethylene caused an increase in abscisic acid concentrations also in the host leaves, with a diminution in leaf water vapor conductance. Jasmonic acid concentration reached a maximum already within the first week of bacterial infection. A wound effect could be excluded. The results demonstrate the concerted interaction of a cascade of transiently induced, non-T-DNA-encoded phytohormones jasmonic acid, ethylene and abscisic acid with T-DNA-encoded auxin and zeatin riboside plus trans-zeatin, all of which are required for successful plant tumor vascularization and development together with inhibition of host plant growth.
ISSN:0032-0935
1432-2048
DOI:10.1007/s00425-002-0883-5