Loading…

Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer

Determining classically whether a coin is fair (head on one side, tail on the other) or fake (heads or tails on both sides) requires an examination of each side. However, the analogous quantum procedure (the Deutsch-Jozsa algorithm) requires just one examination step. The Deutsch-Jozsa algorithm has...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2003-01, Vol.421 (6918), p.48-50
Main Authors: Schmidt-Kaler, Ferdinand, Gulde, Stephan, Riebe, Mark, Lancaster, Gavin P. T, Becher, Christoph, Eschner, Jürgen, Häffner, Hartmut, Chuang, Isaac L, Blatt, Rainer
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c639t-3176c54b8d1a104fbfc9000d82b328cc7b0d30bb7e7b740c777ee4404b617f4d3
cites cdi_FETCH-LOGICAL-c639t-3176c54b8d1a104fbfc9000d82b328cc7b0d30bb7e7b740c777ee4404b617f4d3
container_end_page 50
container_issue 6918
container_start_page 48
container_title Nature (London)
container_volume 421
creator Schmidt-Kaler, Ferdinand
Gulde, Stephan
Riebe, Mark
Lancaster, Gavin P. T
Becher, Christoph
Eschner, Jürgen
Häffner, Hartmut
Chuang, Isaac L
Blatt, Rainer
description Determining classically whether a coin is fair (head on one side, tail on the other) or fake (heads or tails on both sides) requires an examination of each side. However, the analogous quantum procedure (the Deutsch-Jozsa algorithm) requires just one examination step. The Deutsch-Jozsa algorithm has been realized experimentally using bulk nuclear magnetic resonance techniques, employing nuclear spins as quantum bits (qubits). In contrast, the ion trap processor utilises motional and electronic quantum states of individual atoms as qubits, and in principle is easier to scale to many qubits. Experimental advances in the latter area include the realization of a two-qubit quantum gate, the entanglement of four ions, quantum state engineering and entanglement-enhanced phase estimation. Here we exploit techniques developed for nuclear magnetic resonance to implement the Deutsch-Jozsa algorithm on an ion-trap quantum processor, using as qubits the electronic and motional states of a single calcium ion. Our ion-based implementation of a full quantum algorithm serves to demonstrate experimental procedures with the quality and precision required for complex computations, confirming the potential of trapped ions for quantum computation.
doi_str_mv 10.1038/nature01336
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_72947531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A187578338</galeid><sourcerecordid>A187578338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c639t-3176c54b8d1a104fbfc9000d82b328cc7b0d30bb7e7b740c777ee4404b617f4d3</originalsourceid><addsrcrecordid>eNqN0t2L1DAQAPAgireuPvku9UBBtGfSpE36uKxfK6eCnvhY0nS626NNuvkA9a83Rxd3V1aUPAQmv8wkwyD0kOALgql4qaUPFjChtLiFZoTxImWF4LfRDONMpFjQ4gzdc-4aY5wTzu6iM5LlhJSsnKEPq2HsYQDtpe-MTkyb-A0kryB4pzbpe_PTyUT2a2M7vxmSKKROIky9lWOyDVL7MCTKDGPwYO-jO63sHTzY7XP09c3rq-W79PLT29VycZmqgpY-pYQXKme1aIgkmLV1q8r4uEZkNc2EUrzGDcV1zYHXnGHFOQdgDLO6ILxlDZ2jp1Pe0ZptAOeroXMK-l5qMMFVPCsZzyn5J8y4KHLC6H_C2O85Ov8DXptgdfxtlWGW5yXJyojSCa1lD1WnWxPbpdagwcreaGi7GF4QwXMuKBX7pEdejd22OkQXJ1BcDQydOpn12dGFaDx892sZnKtWXz4f2-d_t4urb8uPJ7WyxjkLbTXabpD2R0VwdTOU1cFQRv1o17JQD9Ds7W4KI3iyA9Ip2bdWatW5vWM5oxjflH0xOReP9Brsvven6z6e-BT8ne_Q_ALBiwCf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204559129</pqid></control><display><type>article</type><title>Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer</title><source>Nature</source><creator>Schmidt-Kaler, Ferdinand ; Gulde, Stephan ; Riebe, Mark ; Lancaster, Gavin P. T ; Becher, Christoph ; Eschner, Jürgen ; Häffner, Hartmut ; Chuang, Isaac L ; Blatt, Rainer</creator><creatorcontrib>Schmidt-Kaler, Ferdinand ; Gulde, Stephan ; Riebe, Mark ; Lancaster, Gavin P. T ; Becher, Christoph ; Eschner, Jürgen ; Häffner, Hartmut ; Chuang, Isaac L ; Blatt, Rainer</creatorcontrib><description>Determining classically whether a coin is fair (head on one side, tail on the other) or fake (heads or tails on both sides) requires an examination of each side. However, the analogous quantum procedure (the Deutsch-Jozsa algorithm) requires just one examination step. The Deutsch-Jozsa algorithm has been realized experimentally using bulk nuclear magnetic resonance techniques, employing nuclear spins as quantum bits (qubits). In contrast, the ion trap processor utilises motional and electronic quantum states of individual atoms as qubits, and in principle is easier to scale to many qubits. Experimental advances in the latter area include the realization of a two-qubit quantum gate, the entanglement of four ions, quantum state engineering and entanglement-enhanced phase estimation. Here we exploit techniques developed for nuclear magnetic resonance to implement the Deutsch-Jozsa algorithm on an ion-trap quantum processor, using as qubits the electronic and motional states of a single calcium ion. Our ion-based implementation of a full quantum algorithm serves to demonstrate experimental procedures with the quality and precision required for complex computations, confirming the potential of trapped ions for quantum computation.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature01336</identifier><identifier>PMID: 12511949</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Algorithms ; Classical and quantum physics: mechanics and fields ; Exact sciences and technology ; Humanities and Social Sciences ; Ions ; letter ; multidisciplinary ; NMR ; Nuclear magnetic resonance ; Physics ; Quantum computation ; Quantum information ; Quantum theory ; Science</subject><ispartof>Nature (London), 2003-01, Vol.421 (6918), p.48-50</ispartof><rights>Macmillan Magazines Ltd. 2003</rights><rights>2003 INIST-CNRS</rights><rights>COPYRIGHT 2003 Nature Publishing Group</rights><rights>Copyright Macmillan Journals Ltd. Jan 2, 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c639t-3176c54b8d1a104fbfc9000d82b328cc7b0d30bb7e7b740c777ee4404b617f4d3</citedby><cites>FETCH-LOGICAL-c639t-3176c54b8d1a104fbfc9000d82b328cc7b0d30bb7e7b740c777ee4404b617f4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2727,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14543008$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12511949$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmidt-Kaler, Ferdinand</creatorcontrib><creatorcontrib>Gulde, Stephan</creatorcontrib><creatorcontrib>Riebe, Mark</creatorcontrib><creatorcontrib>Lancaster, Gavin P. T</creatorcontrib><creatorcontrib>Becher, Christoph</creatorcontrib><creatorcontrib>Eschner, Jürgen</creatorcontrib><creatorcontrib>Häffner, Hartmut</creatorcontrib><creatorcontrib>Chuang, Isaac L</creatorcontrib><creatorcontrib>Blatt, Rainer</creatorcontrib><title>Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Determining classically whether a coin is fair (head on one side, tail on the other) or fake (heads or tails on both sides) requires an examination of each side. However, the analogous quantum procedure (the Deutsch-Jozsa algorithm) requires just one examination step. The Deutsch-Jozsa algorithm has been realized experimentally using bulk nuclear magnetic resonance techniques, employing nuclear spins as quantum bits (qubits). In contrast, the ion trap processor utilises motional and electronic quantum states of individual atoms as qubits, and in principle is easier to scale to many qubits. Experimental advances in the latter area include the realization of a two-qubit quantum gate, the entanglement of four ions, quantum state engineering and entanglement-enhanced phase estimation. Here we exploit techniques developed for nuclear magnetic resonance to implement the Deutsch-Jozsa algorithm on an ion-trap quantum processor, using as qubits the electronic and motional states of a single calcium ion. Our ion-based implementation of a full quantum algorithm serves to demonstrate experimental procedures with the quality and precision required for complex computations, confirming the potential of trapped ions for quantum computation.</description><subject>Algorithms</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Exact sciences and technology</subject><subject>Humanities and Social Sciences</subject><subject>Ions</subject><subject>letter</subject><subject>multidisciplinary</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Physics</subject><subject>Quantum computation</subject><subject>Quantum information</subject><subject>Quantum theory</subject><subject>Science</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqN0t2L1DAQAPAgireuPvku9UBBtGfSpE36uKxfK6eCnvhY0nS626NNuvkA9a83Rxd3V1aUPAQmv8wkwyD0kOALgql4qaUPFjChtLiFZoTxImWF4LfRDONMpFjQ4gzdc-4aY5wTzu6iM5LlhJSsnKEPq2HsYQDtpe-MTkyb-A0kryB4pzbpe_PTyUT2a2M7vxmSKKROIky9lWOyDVL7MCTKDGPwYO-jO63sHTzY7XP09c3rq-W79PLT29VycZmqgpY-pYQXKme1aIgkmLV1q8r4uEZkNc2EUrzGDcV1zYHXnGHFOQdgDLO6ILxlDZ2jp1Pe0ZptAOeroXMK-l5qMMFVPCsZzyn5J8y4KHLC6H_C2O85Ov8DXptgdfxtlWGW5yXJyojSCa1lD1WnWxPbpdagwcreaGi7GF4QwXMuKBX7pEdejd22OkQXJ1BcDQydOpn12dGFaDx892sZnKtWXz4f2-d_t4urb8uPJ7WyxjkLbTXabpD2R0VwdTOU1cFQRv1o17JQD9Ds7W4KI3iyA9Ip2bdWatW5vWM5oxjflH0xOReP9Brsvven6z6e-BT8ne_Q_ALBiwCf</recordid><startdate>20030102</startdate><enddate>20030102</enddate><creator>Schmidt-Kaler, Ferdinand</creator><creator>Gulde, Stephan</creator><creator>Riebe, Mark</creator><creator>Lancaster, Gavin P. T</creator><creator>Becher, Christoph</creator><creator>Eschner, Jürgen</creator><creator>Häffner, Hartmut</creator><creator>Chuang, Isaac L</creator><creator>Blatt, Rainer</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7U5</scope><scope>L7M</scope><scope>H8D</scope><scope>7X8</scope></search><sort><creationdate>20030102</creationdate><title>Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer</title><author>Schmidt-Kaler, Ferdinand ; Gulde, Stephan ; Riebe, Mark ; Lancaster, Gavin P. T ; Becher, Christoph ; Eschner, Jürgen ; Häffner, Hartmut ; Chuang, Isaac L ; Blatt, Rainer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c639t-3176c54b8d1a104fbfc9000d82b328cc7b0d30bb7e7b740c777ee4404b617f4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Exact sciences and technology</topic><topic>Humanities and Social Sciences</topic><topic>Ions</topic><topic>letter</topic><topic>multidisciplinary</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Physics</topic><topic>Quantum computation</topic><topic>Quantum information</topic><topic>Quantum theory</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmidt-Kaler, Ferdinand</creatorcontrib><creatorcontrib>Gulde, Stephan</creatorcontrib><creatorcontrib>Riebe, Mark</creatorcontrib><creatorcontrib>Lancaster, Gavin P. T</creatorcontrib><creatorcontrib>Becher, Christoph</creatorcontrib><creatorcontrib>Eschner, Jürgen</creatorcontrib><creatorcontrib>Häffner, Hartmut</creatorcontrib><creatorcontrib>Chuang, Isaac L</creatorcontrib><creatorcontrib>Blatt, Rainer</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aerospace Database</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmidt-Kaler, Ferdinand</au><au>Gulde, Stephan</au><au>Riebe, Mark</au><au>Lancaster, Gavin P. T</au><au>Becher, Christoph</au><au>Eschner, Jürgen</au><au>Häffner, Hartmut</au><au>Chuang, Isaac L</au><au>Blatt, Rainer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2003-01-02</date><risdate>2003</risdate><volume>421</volume><issue>6918</issue><spage>48</spage><epage>50</epage><pages>48-50</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Determining classically whether a coin is fair (head on one side, tail on the other) or fake (heads or tails on both sides) requires an examination of each side. However, the analogous quantum procedure (the Deutsch-Jozsa algorithm) requires just one examination step. The Deutsch-Jozsa algorithm has been realized experimentally using bulk nuclear magnetic resonance techniques, employing nuclear spins as quantum bits (qubits). In contrast, the ion trap processor utilises motional and electronic quantum states of individual atoms as qubits, and in principle is easier to scale to many qubits. Experimental advances in the latter area include the realization of a two-qubit quantum gate, the entanglement of four ions, quantum state engineering and entanglement-enhanced phase estimation. Here we exploit techniques developed for nuclear magnetic resonance to implement the Deutsch-Jozsa algorithm on an ion-trap quantum processor, using as qubits the electronic and motional states of a single calcium ion. Our ion-based implementation of a full quantum algorithm serves to demonstrate experimental procedures with the quality and precision required for complex computations, confirming the potential of trapped ions for quantum computation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>12511949</pmid><doi>10.1038/nature01336</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2003-01, Vol.421 (6918), p.48-50
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_72947531
source Nature
subjects Algorithms
Classical and quantum physics: mechanics and fields
Exact sciences and technology
Humanities and Social Sciences
Ions
letter
multidisciplinary
NMR
Nuclear magnetic resonance
Physics
Quantum computation
Quantum information
Quantum theory
Science
title Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A24%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20the%20Deutsch-Jozsa%20algorithm%20on%20an%20ion-trap%20quantum%20computer&rft.jtitle=Nature%20(London)&rft.au=Schmidt-Kaler,%20Ferdinand&rft.date=2003-01-02&rft.volume=421&rft.issue=6918&rft.spage=48&rft.epage=50&rft.pages=48-50&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature01336&rft_dat=%3Cgale_proqu%3EA187578338%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c639t-3176c54b8d1a104fbfc9000d82b328cc7b0d30bb7e7b740c777ee4404b617f4d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204559129&rft_id=info:pmid/12511949&rft_galeid=A187578338&rfr_iscdi=true