Loading…

Nitrergic dendrites in the superficial layers of the rat superior colliculus: Retinal afferents and alternatively spliced isoforms in normal and deafferented animals

The superficial layers of the rat superior colliculus (sSC) receive innervation from the retina and include nitrergic neurons. We have shown previously that in sSC, eye enucleation reduces NADPH diaphorase staining considerably in all but the most proximal dendrites of nitrergic neurons. We have use...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neuroscience research 2003-02, Vol.71 (3), p.455-461
Main Authors: Batista, Claudia M. C., Carneiro, Kátia, Ernesto de Bittencourt-Navarrete, Ruben, Soares-Mota, Marcia, Cavalcante, Leny A., Mendez-Otero, Rosalia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The superficial layers of the rat superior colliculus (sSC) receive innervation from the retina and include nitrergic neurons. We have shown previously that in sSC, eye enucleation reduces NADPH diaphorase staining considerably in all but the most proximal dendrites of nitrergic neurons. We have used immunocytochemistry for neuronal nitric oxide synthase (nNOS) at light and electron microscopic levels and bilateral eye enucleation with varied survival times to determine the regulatory changes imposed by the direct and indirect loss of retinal input on apparent nNOS amount and subcellular distribution. In addition, we have used SDS‐PAGE and immunoblotting to test alternatively spliced isoforms in normal and deafferented animals. Our results show that unambiguously identified retinal terminals contact nitrergic neurons. In normal dendrites, nNOS immunoreactivity was distributed almost completely within the cytoplasm of the dendrite and along the postsynaptic membrane at synaptic junctions, in association with endoplasmic reticulum, ribosomes and external mitochondrial membranes. In contrast, nNOS labeling was greatly reduced in sSC deprived of retinal projections, and could only be observed in association with mitochondrial membranes and postsynaptic densities. Immunoblots of the soluble fraction from sSC revealed a surprisingly high proportion of the β isoform with respect to the α counterpart in normal colliculi, suggesting an increase in isoform proportion after enucleation, or at least maintenance of the same proportion. It is suggested that ultrastructural alterations observed in sSC cells of enucleated animals may be consequent to plastic reactions of the sSC cells in response to the removal of retinal afferents. © 2002 Wiley‐Liss, Inc.
ISSN:0360-4012
1097-4547
DOI:10.1002/jnr.10494