Loading…
Inference for a linear regression model with an interval-censored covariate
Interval‐censored observations of a response variable are a common occurrence in medical studies, and usually result when the response is the elapsed time until some event whose occurrence is periodically monitored. In this paper we consider a multivariate regression setting in which the explanatory...
Saved in:
Published in: | Statistics in medicine 2003-02, Vol.22 (3), p.409-425 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3856-627b33006861896d3761c7a114993b8ae2c0e910a501c2f3a888dbb7078ca03f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3856-627b33006861896d3761c7a114993b8ae2c0e910a501c2f3a888dbb7078ca03f3 |
container_end_page | 425 |
container_issue | 3 |
container_start_page | 409 |
container_title | Statistics in medicine |
container_volume | 22 |
creator | Gómez, Guadalupe Espinal, Anna W. Lagakos, Stephen |
description | Interval‐censored observations of a response variable are a common occurrence in medical studies, and usually result when the response is the elapsed time until some event whose occurrence is periodically monitored. In this paper we consider a multivariate regression setting in which the explanatory variable is interval censored. Use of an ad hoc method of analysis for such data, such as taking the midpoint of the interval‐censored covariate and applying ordinary least‐squares, is not in general valid. We develop a likelihood approach, together with a two‐step conditional algorithm, to jointly estimate the regression coefficients as well as the marginal distribution of the covariate. The resulting estimators are asymptotically normal. The performance of the method is assessed via simulations, and illustrated using data from a recent HIV/AIDS clinical trial to assess the association between waiting time between indinavir failure and subsequent viral load at enrolment. Extensions of the procedure to other parametric distributions are discussed. Copyright © 2003 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/sim.1326 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72953892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72953892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3856-627b33006861896d3761c7a114993b8ae2c0e910a501c2f3a888dbb7078ca03f3</originalsourceid><addsrcrecordid>eNp10EtPFEEUhuEK0cCAJv4CUxsJm8a6TN2WZrg4AZUEL8vK6erTWtpdDVU9IP-eJtORlauzeXK-5CXkDWfHnDHxvsT-mEuhd8iCM2cqJpR9QRZMGFNpw9Ue2S_lN2OcK2F2yR4XSjhrxIJcrFOLGVNA2g6ZAu1iQsg048-MpcQh0X5osKP3cfxFIdGYRsx30FUBUxkyNjQMd5AjjPiKvGyhK_h6vgfk29np19XH6vLL-Xr14bIK0ipdaWFqKRnTVnPrdCON5sEA50vnZG0BRWDoOAPFeBCtBGttU9eGGRuAyVYekMPt35s83G6wjL6PJWDXQcJhU7wRTknrxASPtjDkoZSMrb_JsYf84DnzT-H8FM4_hZvo2_nnpu6xeYZzqQm8mwGUAF2bIYVYnt1yaYVauslVW3cfO3z476C_Xn-ah2cfy4h__3nIf7w20ij_4_O5X32_PpFXV9wb-QgItpHx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72953892</pqid></control><display><type>article</type><title>Inference for a linear regression model with an interval-censored covariate</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Gómez, Guadalupe ; Espinal, Anna ; W. Lagakos, Stephen</creator><creatorcontrib>Gómez, Guadalupe ; Espinal, Anna ; W. Lagakos, Stephen</creatorcontrib><description>Interval‐censored observations of a response variable are a common occurrence in medical studies, and usually result when the response is the elapsed time until some event whose occurrence is periodically monitored. In this paper we consider a multivariate regression setting in which the explanatory variable is interval censored. Use of an ad hoc method of analysis for such data, such as taking the midpoint of the interval‐censored covariate and applying ordinary least‐squares, is not in general valid. We develop a likelihood approach, together with a two‐step conditional algorithm, to jointly estimate the regression coefficients as well as the marginal distribution of the covariate. The resulting estimators are asymptotically normal. The performance of the method is assessed via simulations, and illustrated using data from a recent HIV/AIDS clinical trial to assess the association between waiting time between indinavir failure and subsequent viral load at enrolment. Extensions of the procedure to other parametric distributions are discussed. Copyright © 2003 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.1326</identifier><identifier>PMID: 12529872</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Adult ; Biological and medical sciences ; Computer Simulation ; Computerized, statistical medical data processing and models in biomedicine ; HIV - growth & development ; HIV - metabolism ; HIV Infections - drug therapy ; HIV Infections - virology ; HIV Protease Inhibitors - therapeutic use ; Humans ; Indinavir - therapeutic use ; interval censoring ; Likelihood Functions ; Linear Models ; Medical sciences ; Medical statistics ; Middle Aged ; Multivariate Analysis ; non-parametric estimation ; Recurrence ; self-consistency ; Statistics as Topic - methods ; Viral Load</subject><ispartof>Statistics in medicine, 2003-02, Vol.22 (3), p.409-425</ispartof><rights>Copyright © 2003 John Wiley & Sons, Ltd.</rights><rights>2003 INIST-CNRS</rights><rights>Copyright 2003 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3856-627b33006861896d3761c7a114993b8ae2c0e910a501c2f3a888dbb7078ca03f3</citedby><cites>FETCH-LOGICAL-c3856-627b33006861896d3761c7a114993b8ae2c0e910a501c2f3a888dbb7078ca03f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14482549$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12529872$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gómez, Guadalupe</creatorcontrib><creatorcontrib>Espinal, Anna</creatorcontrib><creatorcontrib>W. Lagakos, Stephen</creatorcontrib><title>Inference for a linear regression model with an interval-censored covariate</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>Interval‐censored observations of a response variable are a common occurrence in medical studies, and usually result when the response is the elapsed time until some event whose occurrence is periodically monitored. In this paper we consider a multivariate regression setting in which the explanatory variable is interval censored. Use of an ad hoc method of analysis for such data, such as taking the midpoint of the interval‐censored covariate and applying ordinary least‐squares, is not in general valid. We develop a likelihood approach, together with a two‐step conditional algorithm, to jointly estimate the regression coefficients as well as the marginal distribution of the covariate. The resulting estimators are asymptotically normal. The performance of the method is assessed via simulations, and illustrated using data from a recent HIV/AIDS clinical trial to assess the association between waiting time between indinavir failure and subsequent viral load at enrolment. Extensions of the procedure to other parametric distributions are discussed. Copyright © 2003 John Wiley & Sons, Ltd.</description><subject>Adult</subject><subject>Biological and medical sciences</subject><subject>Computer Simulation</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>HIV - growth & development</subject><subject>HIV - metabolism</subject><subject>HIV Infections - drug therapy</subject><subject>HIV Infections - virology</subject><subject>HIV Protease Inhibitors - therapeutic use</subject><subject>Humans</subject><subject>Indinavir - therapeutic use</subject><subject>interval censoring</subject><subject>Likelihood Functions</subject><subject>Linear Models</subject><subject>Medical sciences</subject><subject>Medical statistics</subject><subject>Middle Aged</subject><subject>Multivariate Analysis</subject><subject>non-parametric estimation</subject><subject>Recurrence</subject><subject>self-consistency</subject><subject>Statistics as Topic - methods</subject><subject>Viral Load</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp10EtPFEEUhuEK0cCAJv4CUxsJm8a6TN2WZrg4AZUEL8vK6erTWtpdDVU9IP-eJtORlauzeXK-5CXkDWfHnDHxvsT-mEuhd8iCM2cqJpR9QRZMGFNpw9Ue2S_lN2OcK2F2yR4XSjhrxIJcrFOLGVNA2g6ZAu1iQsg048-MpcQh0X5osKP3cfxFIdGYRsx30FUBUxkyNjQMd5AjjPiKvGyhK_h6vgfk29np19XH6vLL-Xr14bIK0ipdaWFqKRnTVnPrdCON5sEA50vnZG0BRWDoOAPFeBCtBGttU9eGGRuAyVYekMPt35s83G6wjL6PJWDXQcJhU7wRTknrxASPtjDkoZSMrb_JsYf84DnzT-H8FM4_hZvo2_nnpu6xeYZzqQm8mwGUAF2bIYVYnt1yaYVauslVW3cfO3z476C_Xn-ah2cfy4h__3nIf7w20ij_4_O5X32_PpFXV9wb-QgItpHx</recordid><startdate>20030215</startdate><enddate>20030215</enddate><creator>Gómez, Guadalupe</creator><creator>Espinal, Anna</creator><creator>W. Lagakos, Stephen</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030215</creationdate><title>Inference for a linear regression model with an interval-censored covariate</title><author>Gómez, Guadalupe ; Espinal, Anna ; W. Lagakos, Stephen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3856-627b33006861896d3761c7a114993b8ae2c0e910a501c2f3a888dbb7078ca03f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Adult</topic><topic>Biological and medical sciences</topic><topic>Computer Simulation</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>HIV - growth & development</topic><topic>HIV - metabolism</topic><topic>HIV Infections - drug therapy</topic><topic>HIV Infections - virology</topic><topic>HIV Protease Inhibitors - therapeutic use</topic><topic>Humans</topic><topic>Indinavir - therapeutic use</topic><topic>interval censoring</topic><topic>Likelihood Functions</topic><topic>Linear Models</topic><topic>Medical sciences</topic><topic>Medical statistics</topic><topic>Middle Aged</topic><topic>Multivariate Analysis</topic><topic>non-parametric estimation</topic><topic>Recurrence</topic><topic>self-consistency</topic><topic>Statistics as Topic - methods</topic><topic>Viral Load</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gómez, Guadalupe</creatorcontrib><creatorcontrib>Espinal, Anna</creatorcontrib><creatorcontrib>W. Lagakos, Stephen</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómez, Guadalupe</au><au>Espinal, Anna</au><au>W. Lagakos, Stephen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inference for a linear regression model with an interval-censored covariate</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2003-02-15</date><risdate>2003</risdate><volume>22</volume><issue>3</issue><spage>409</spage><epage>425</epage><pages>409-425</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>Interval‐censored observations of a response variable are a common occurrence in medical studies, and usually result when the response is the elapsed time until some event whose occurrence is periodically monitored. In this paper we consider a multivariate regression setting in which the explanatory variable is interval censored. Use of an ad hoc method of analysis for such data, such as taking the midpoint of the interval‐censored covariate and applying ordinary least‐squares, is not in general valid. We develop a likelihood approach, together with a two‐step conditional algorithm, to jointly estimate the regression coefficients as well as the marginal distribution of the covariate. The resulting estimators are asymptotically normal. The performance of the method is assessed via simulations, and illustrated using data from a recent HIV/AIDS clinical trial to assess the association between waiting time between indinavir failure and subsequent viral load at enrolment. Extensions of the procedure to other parametric distributions are discussed. Copyright © 2003 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>12529872</pmid><doi>10.1002/sim.1326</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2003-02, Vol.22 (3), p.409-425 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_proquest_miscellaneous_72953892 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Adult Biological and medical sciences Computer Simulation Computerized, statistical medical data processing and models in biomedicine HIV - growth & development HIV - metabolism HIV Infections - drug therapy HIV Infections - virology HIV Protease Inhibitors - therapeutic use Humans Indinavir - therapeutic use interval censoring Likelihood Functions Linear Models Medical sciences Medical statistics Middle Aged Multivariate Analysis non-parametric estimation Recurrence self-consistency Statistics as Topic - methods Viral Load |
title | Inference for a linear regression model with an interval-censored covariate |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A01%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inference%20for%20a%20linear%20regression%20model%20with%20an%20interval-censored%20covariate&rft.jtitle=Statistics%20in%20medicine&rft.au=G%C3%B3mez,%20Guadalupe&rft.date=2003-02-15&rft.volume=22&rft.issue=3&rft.spage=409&rft.epage=425&rft.pages=409-425&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.1326&rft_dat=%3Cproquest_cross%3E72953892%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3856-627b33006861896d3761c7a114993b8ae2c0e910a501c2f3a888dbb7078ca03f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=72953892&rft_id=info:pmid/12529872&rfr_iscdi=true |