Loading…

Propranolol and atropine do not alter choroidal blood flow regulation during isometric exercise in healthy humans

Recent studies indicate that the human choroid has a considerable capacity to keep blood flow constant despite exercise-induced increases in perfusion pressure. The mechanisms underlying this vasoconstrictor response remain unclear. We hypothesized that pharmacological modulation of the autonomic ne...

Full description

Saved in:
Bibliographic Details
Published in:Microvascular research 2003, Vol.65 (1), p.39-44
Main Authors: Polska, Elzbieta, Luksch, Alexandra, Schering, Joanne, Frank, Barbara, Imhof, Andrea, Fuchsjäger-Mayrl, Gabriele, Wolzt, Michael, Schmetterer, Leopold
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent studies indicate that the human choroid has a considerable capacity to keep blood flow constant despite exercise-induced increases in perfusion pressure. The mechanisms underlying this vasoconstrictor response remain unclear. We hypothesized that pharmacological modulation of the autonomic nervous system may alter the choroidal pressure/flow relationship during squatting. To test this hypothesis, we performed a randomized, double-masked, placebo-controlled, three-way crossover study in 15 healthy male volunteers. Subjects received, on different study days, intravenous infusions of the beta-adrenoceptor antagonist propranolol, the muscarinic receptor antagonist atropine, or placebo. During these infusions, subjects performed squatting for 6 min. Choroidal blood flow was assessed with laser Doppler flowmetry and ocular perfusion pressure (OPP) was calculated from mean arterial pressure and intraocular pressure. As expected, propranolol reduced basal pulse rate, whereas atropine increased pulse rate, indicating that the drugs were administered at systemically effective doses. None of the drugs altered the choroidal pressure/flow relationship during isometric exercise. These data indicate that the regulatory vasoconstrictor capacity of the choroid during exercise is not affected by systemic blockade of beta-adrenoceptors or muscarinic receptors.
ISSN:0026-2862
1095-9319
DOI:10.1016/S0026-2862(02)00010-9