Loading…
Effect of slow-curing on cavity wall adaptation using a new intensity-changeable light source
Objective. The purpose of the study was to investigate the effects of a new intensity-changeable light source Curetron 7 (CT-7) devised for the slow-curing on cavity wall adaptation in the adhesive composite restorations, as well as the microhardness of the cured composite. Methods. Microhardness of...
Saved in:
Published in: | Dental materials 2003-03, Vol.19 (2), p.147-152 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c427t-c2d9e73fc996cc6cb21a184ca97d0dbf9ea3839968d3f126b0bcc084a4f878b43 |
---|---|
cites | |
container_end_page | 152 |
container_issue | 2 |
container_start_page | 147 |
container_title | Dental materials |
container_volume | 19 |
creator | Uno, Shigeru Tanaka, Toru Natsuizaka, Asuka Abo, Tomoko |
description | Objective. The purpose of the study was to investigate the effects of a new intensity-changeable light source Curetron 7 (CT-7) devised for the slow-curing on cavity wall adaptation in the adhesive composite restorations, as well as the microhardness of the cured composite.
Methods. Microhardness of both top and bottom surfaces was measured by an indentation method for 2
mm thick cylindrical specimens, and cavity adaptation was evaluated in cylindrical dentin cavities (∅ 3.5×1.5
mm
2) of human extracted molars bonded to a hybrid resin composite. The irradiation was done with CT-7, VIP or Candelux (CDX) under the following five conditions: CT1, 600
mW/cm
2×30
s (CT-7); CT2, 230
mW/cm
2×20
s+600
mW/cm
2×20
s (CT-7); CT3, 230
mW/cm
2×20
s+pause×10
s+600
mW/cm
2×20
s (CT-7); VIP, 300
mW/cm
2×3
s+pause×3
min+600
mW/cm
2×30
s (VIP); CDX, 200
mW/cm
2×10
s+600
mW/cm
2×30
s.
Results. Five irradiation conditions had no influence on the microhardness for either top or bottom surface (Scheffe,
p>0.05). In conditions CT3, VIP and CDX, top surfaces were harder than bottom surfaces (Student's
t-test,
p0.05). In comparison of poled data for each condition, the best adaptation was seen in condition CT3, and the second in condition VIP (Kruskal–Wallis,
p |
doi_str_mv | 10.1016/S0109-5641(02)00023-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72971141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0109564102000234</els_id><sourcerecordid>72971141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-c2d9e73fc996cc6cb21a184ca97d0dbf9ea3839968d3f126b0bcc084a4f878b43</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEYuPjJ4ByQnAoJGnWNieEpvEhTeIAHFGUus4W1LUjaTft39NuExw5WbIf-5UfQi44u-WMJ3dvjDMVjRLJr5m4YYyJOJIHZMizVEWMqfSQDH-RATkJ4auDpFD8mAy4GMmYCzYknxNrERpaWxrKeh1B6101o3VFwaxcs6FrU5bUFGbZmMZ17Tb0c0MrXFNXNViFjopgbqoZmrxEWrrZvKGhbj3gGTmypgx4vq-n5ONx8j5-jqavTy_jh2kEUqRNBKJQmMYWlEoAEsgFNzyTYFRasCK3Ck2cxd0wK2LLRZKzHIBl0kibpVku41Nytbu79PV3i6HRCxcAy9JUWLdBp0KlnEvegaMdCL4OwaPVS-8Wxm80Z7r3qrdedS9NM6G3XnUfcLkPaPMFFn9be5EdcL8DsHtz5dDrAA4rwML5zq8uavdPxA8SOIie</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72971141</pqid></control><display><type>article</type><title>Effect of slow-curing on cavity wall adaptation using a new intensity-changeable light source</title><source>ScienceDirect Freedom Collection</source><creator>Uno, Shigeru ; Tanaka, Toru ; Natsuizaka, Asuka ; Abo, Tomoko</creator><creatorcontrib>Uno, Shigeru ; Tanaka, Toru ; Natsuizaka, Asuka ; Abo, Tomoko</creatorcontrib><description>Objective. The purpose of the study was to investigate the effects of a new intensity-changeable light source Curetron 7 (CT-7) devised for the slow-curing on cavity wall adaptation in the adhesive composite restorations, as well as the microhardness of the cured composite.
Methods. Microhardness of both top and bottom surfaces was measured by an indentation method for 2
mm thick cylindrical specimens, and cavity adaptation was evaluated in cylindrical dentin cavities (∅ 3.5×1.5
mm
2) of human extracted molars bonded to a hybrid resin composite. The irradiation was done with CT-7, VIP or Candelux (CDX) under the following five conditions: CT1, 600
mW/cm
2×30
s (CT-7); CT2, 230
mW/cm
2×20
s+600
mW/cm
2×20
s (CT-7); CT3, 230
mW/cm
2×20
s+pause×10
s+600
mW/cm
2×20
s (CT-7); VIP, 300
mW/cm
2×3
s+pause×3
min+600
mW/cm
2×30
s (VIP); CDX, 200
mW/cm
2×10
s+600
mW/cm
2×30
s.
Results. Five irradiation conditions had no influence on the microhardness for either top or bottom surface (Scheffe,
p>0.05). In conditions CT3, VIP and CDX, top surfaces were harder than bottom surfaces (Student's
t-test,
p<0.05). The statistical analysis revealed no difference in adaptation among the locations along the cavity walls for each irradiation conditions (Kruskal–Wallis,
p>0.05). In comparison of poled data for each condition, the best adaptation was seen in condition CT3, and the second in condition VIP (Kruskal–Wallis,
p<0.05).
Significance. These results proved the efficacy of the slow-curing method combined with the interval between two irradiations with low intensity and high intensity. CT-7 could be useful for the adhesive composite restorations.</description><identifier>ISSN: 0109-5641</identifier><identifier>EISSN: 1879-0097</identifier><identifier>DOI: 10.1016/S0109-5641(02)00023-4</identifier><identifier>PMID: 12543120</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Analysis of Variance ; Cavity adaptation ; Composite Resins - radiation effects ; Contraction stress ; Dental Equipment ; Dental Marginal Adaptation ; Dental Restoration, Permanent - methods ; Dentin ; Dentistry ; Hardness - radiation effects ; Humans ; Light ; Light source ; Materials Testing ; Molar ; Polymerization ; Polymers - chemistry ; Resin composite ; Slow-curing ; Statistics, Nonparametric</subject><ispartof>Dental materials, 2003-03, Vol.19 (2), p.147-152</ispartof><rights>2002 Academy of Dental Materials</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-c2d9e73fc996cc6cb21a184ca97d0dbf9ea3839968d3f126b0bcc084a4f878b43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12543120$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Uno, Shigeru</creatorcontrib><creatorcontrib>Tanaka, Toru</creatorcontrib><creatorcontrib>Natsuizaka, Asuka</creatorcontrib><creatorcontrib>Abo, Tomoko</creatorcontrib><title>Effect of slow-curing on cavity wall adaptation using a new intensity-changeable light source</title><title>Dental materials</title><addtitle>Dent Mater</addtitle><description>Objective. The purpose of the study was to investigate the effects of a new intensity-changeable light source Curetron 7 (CT-7) devised for the slow-curing on cavity wall adaptation in the adhesive composite restorations, as well as the microhardness of the cured composite.
Methods. Microhardness of both top and bottom surfaces was measured by an indentation method for 2
mm thick cylindrical specimens, and cavity adaptation was evaluated in cylindrical dentin cavities (∅ 3.5×1.5
mm
2) of human extracted molars bonded to a hybrid resin composite. The irradiation was done with CT-7, VIP or Candelux (CDX) under the following five conditions: CT1, 600
mW/cm
2×30
s (CT-7); CT2, 230
mW/cm
2×20
s+600
mW/cm
2×20
s (CT-7); CT3, 230
mW/cm
2×20
s+pause×10
s+600
mW/cm
2×20
s (CT-7); VIP, 300
mW/cm
2×3
s+pause×3
min+600
mW/cm
2×30
s (VIP); CDX, 200
mW/cm
2×10
s+600
mW/cm
2×30
s.
Results. Five irradiation conditions had no influence on the microhardness for either top or bottom surface (Scheffe,
p>0.05). In conditions CT3, VIP and CDX, top surfaces were harder than bottom surfaces (Student's
t-test,
p<0.05). The statistical analysis revealed no difference in adaptation among the locations along the cavity walls for each irradiation conditions (Kruskal–Wallis,
p>0.05). In comparison of poled data for each condition, the best adaptation was seen in condition CT3, and the second in condition VIP (Kruskal–Wallis,
p<0.05).
Significance. These results proved the efficacy of the slow-curing method combined with the interval between two irradiations with low intensity and high intensity. CT-7 could be useful for the adhesive composite restorations.</description><subject>Analysis of Variance</subject><subject>Cavity adaptation</subject><subject>Composite Resins - radiation effects</subject><subject>Contraction stress</subject><subject>Dental Equipment</subject><subject>Dental Marginal Adaptation</subject><subject>Dental Restoration, Permanent - methods</subject><subject>Dentin</subject><subject>Dentistry</subject><subject>Hardness - radiation effects</subject><subject>Humans</subject><subject>Light</subject><subject>Light source</subject><subject>Materials Testing</subject><subject>Molar</subject><subject>Polymerization</subject><subject>Polymers - chemistry</subject><subject>Resin composite</subject><subject>Slow-curing</subject><subject>Statistics, Nonparametric</subject><issn>0109-5641</issn><issn>1879-0097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhiMEYuPjJ4ByQnAoJGnWNieEpvEhTeIAHFGUus4W1LUjaTft39NuExw5WbIf-5UfQi44u-WMJ3dvjDMVjRLJr5m4YYyJOJIHZMizVEWMqfSQDH-RATkJ4auDpFD8mAy4GMmYCzYknxNrERpaWxrKeh1B6101o3VFwaxcs6FrU5bUFGbZmMZ17Tb0c0MrXFNXNViFjopgbqoZmrxEWrrZvKGhbj3gGTmypgx4vq-n5ONx8j5-jqavTy_jh2kEUqRNBKJQmMYWlEoAEsgFNzyTYFRasCK3Ck2cxd0wK2LLRZKzHIBl0kibpVku41Nytbu79PV3i6HRCxcAy9JUWLdBp0KlnEvegaMdCL4OwaPVS-8Wxm80Z7r3qrdedS9NM6G3XnUfcLkPaPMFFn9be5EdcL8DsHtz5dDrAA4rwML5zq8uavdPxA8SOIie</recordid><startdate>20030301</startdate><enddate>20030301</enddate><creator>Uno, Shigeru</creator><creator>Tanaka, Toru</creator><creator>Natsuizaka, Asuka</creator><creator>Abo, Tomoko</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030301</creationdate><title>Effect of slow-curing on cavity wall adaptation using a new intensity-changeable light source</title><author>Uno, Shigeru ; Tanaka, Toru ; Natsuizaka, Asuka ; Abo, Tomoko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-c2d9e73fc996cc6cb21a184ca97d0dbf9ea3839968d3f126b0bcc084a4f878b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Analysis of Variance</topic><topic>Cavity adaptation</topic><topic>Composite Resins - radiation effects</topic><topic>Contraction stress</topic><topic>Dental Equipment</topic><topic>Dental Marginal Adaptation</topic><topic>Dental Restoration, Permanent - methods</topic><topic>Dentin</topic><topic>Dentistry</topic><topic>Hardness - radiation effects</topic><topic>Humans</topic><topic>Light</topic><topic>Light source</topic><topic>Materials Testing</topic><topic>Molar</topic><topic>Polymerization</topic><topic>Polymers - chemistry</topic><topic>Resin composite</topic><topic>Slow-curing</topic><topic>Statistics, Nonparametric</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uno, Shigeru</creatorcontrib><creatorcontrib>Tanaka, Toru</creatorcontrib><creatorcontrib>Natsuizaka, Asuka</creatorcontrib><creatorcontrib>Abo, Tomoko</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Dental materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uno, Shigeru</au><au>Tanaka, Toru</au><au>Natsuizaka, Asuka</au><au>Abo, Tomoko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of slow-curing on cavity wall adaptation using a new intensity-changeable light source</atitle><jtitle>Dental materials</jtitle><addtitle>Dent Mater</addtitle><date>2003-03-01</date><risdate>2003</risdate><volume>19</volume><issue>2</issue><spage>147</spage><epage>152</epage><pages>147-152</pages><issn>0109-5641</issn><eissn>1879-0097</eissn><abstract>Objective. The purpose of the study was to investigate the effects of a new intensity-changeable light source Curetron 7 (CT-7) devised for the slow-curing on cavity wall adaptation in the adhesive composite restorations, as well as the microhardness of the cured composite.
Methods. Microhardness of both top and bottom surfaces was measured by an indentation method for 2
mm thick cylindrical specimens, and cavity adaptation was evaluated in cylindrical dentin cavities (∅ 3.5×1.5
mm
2) of human extracted molars bonded to a hybrid resin composite. The irradiation was done with CT-7, VIP or Candelux (CDX) under the following five conditions: CT1, 600
mW/cm
2×30
s (CT-7); CT2, 230
mW/cm
2×20
s+600
mW/cm
2×20
s (CT-7); CT3, 230
mW/cm
2×20
s+pause×10
s+600
mW/cm
2×20
s (CT-7); VIP, 300
mW/cm
2×3
s+pause×3
min+600
mW/cm
2×30
s (VIP); CDX, 200
mW/cm
2×10
s+600
mW/cm
2×30
s.
Results. Five irradiation conditions had no influence on the microhardness for either top or bottom surface (Scheffe,
p>0.05). In conditions CT3, VIP and CDX, top surfaces were harder than bottom surfaces (Student's
t-test,
p<0.05). The statistical analysis revealed no difference in adaptation among the locations along the cavity walls for each irradiation conditions (Kruskal–Wallis,
p>0.05). In comparison of poled data for each condition, the best adaptation was seen in condition CT3, and the second in condition VIP (Kruskal–Wallis,
p<0.05).
Significance. These results proved the efficacy of the slow-curing method combined with the interval between two irradiations with low intensity and high intensity. CT-7 could be useful for the adhesive composite restorations.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>12543120</pmid><doi>10.1016/S0109-5641(02)00023-4</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0109-5641 |
ispartof | Dental materials, 2003-03, Vol.19 (2), p.147-152 |
issn | 0109-5641 1879-0097 |
language | eng |
recordid | cdi_proquest_miscellaneous_72971141 |
source | ScienceDirect Freedom Collection |
subjects | Analysis of Variance Cavity adaptation Composite Resins - radiation effects Contraction stress Dental Equipment Dental Marginal Adaptation Dental Restoration, Permanent - methods Dentin Dentistry Hardness - radiation effects Humans Light Light source Materials Testing Molar Polymerization Polymers - chemistry Resin composite Slow-curing Statistics, Nonparametric |
title | Effect of slow-curing on cavity wall adaptation using a new intensity-changeable light source |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A58%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20slow-curing%20on%20cavity%20wall%20adaptation%20using%20a%20new%20intensity-changeable%20light%20source&rft.jtitle=Dental%20materials&rft.au=Uno,%20Shigeru&rft.date=2003-03-01&rft.volume=19&rft.issue=2&rft.spage=147&rft.epage=152&rft.pages=147-152&rft.issn=0109-5641&rft.eissn=1879-0097&rft_id=info:doi/10.1016/S0109-5641(02)00023-4&rft_dat=%3Cproquest_cross%3E72971141%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-c2d9e73fc996cc6cb21a184ca97d0dbf9ea3839968d3f126b0bcc084a4f878b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=72971141&rft_id=info:pmid/12543120&rfr_iscdi=true |