Loading…

Effect of slow-curing on cavity wall adaptation using a new intensity-changeable light source

Objective. The purpose of the study was to investigate the effects of a new intensity-changeable light source Curetron 7 (CT-7) devised for the slow-curing on cavity wall adaptation in the adhesive composite restorations, as well as the microhardness of the cured composite. Methods. Microhardness of...

Full description

Saved in:
Bibliographic Details
Published in:Dental materials 2003-03, Vol.19 (2), p.147-152
Main Authors: Uno, Shigeru, Tanaka, Toru, Natsuizaka, Asuka, Abo, Tomoko
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c427t-c2d9e73fc996cc6cb21a184ca97d0dbf9ea3839968d3f126b0bcc084a4f878b43
cites
container_end_page 152
container_issue 2
container_start_page 147
container_title Dental materials
container_volume 19
creator Uno, Shigeru
Tanaka, Toru
Natsuizaka, Asuka
Abo, Tomoko
description Objective. The purpose of the study was to investigate the effects of a new intensity-changeable light source Curetron 7 (CT-7) devised for the slow-curing on cavity wall adaptation in the adhesive composite restorations, as well as the microhardness of the cured composite. Methods. Microhardness of both top and bottom surfaces was measured by an indentation method for 2 mm thick cylindrical specimens, and cavity adaptation was evaluated in cylindrical dentin cavities (∅ 3.5×1.5 mm 2) of human extracted molars bonded to a hybrid resin composite. The irradiation was done with CT-7, VIP or Candelux (CDX) under the following five conditions: CT1, 600 mW/cm 2×30 s (CT-7); CT2, 230 mW/cm 2×20 s+600 mW/cm 2×20 s (CT-7); CT3, 230 mW/cm 2×20 s+pause×10 s+600 mW/cm 2×20 s (CT-7); VIP, 300 mW/cm 2×3 s+pause×3 min+600 mW/cm 2×30 s (VIP); CDX, 200 mW/cm 2×10 s+600 mW/cm 2×30 s. Results. Five irradiation conditions had no influence on the microhardness for either top or bottom surface (Scheffe, p>0.05). In conditions CT3, VIP and CDX, top surfaces were harder than bottom surfaces (Student's t-test, p0.05). In comparison of poled data for each condition, the best adaptation was seen in condition CT3, and the second in condition VIP (Kruskal–Wallis, p
doi_str_mv 10.1016/S0109-5641(02)00023-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72971141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0109564102000234</els_id><sourcerecordid>72971141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-c2d9e73fc996cc6cb21a184ca97d0dbf9ea3839968d3f126b0bcc084a4f878b43</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEYuPjJ4ByQnAoJGnWNieEpvEhTeIAHFGUus4W1LUjaTft39NuExw5WbIf-5UfQi44u-WMJ3dvjDMVjRLJr5m4YYyJOJIHZMizVEWMqfSQDH-RATkJ4auDpFD8mAy4GMmYCzYknxNrERpaWxrKeh1B6101o3VFwaxcs6FrU5bUFGbZmMZ17Tb0c0MrXFNXNViFjopgbqoZmrxEWrrZvKGhbj3gGTmypgx4vq-n5ONx8j5-jqavTy_jh2kEUqRNBKJQmMYWlEoAEsgFNzyTYFRasCK3Ck2cxd0wK2LLRZKzHIBl0kibpVku41Nytbu79PV3i6HRCxcAy9JUWLdBp0KlnEvegaMdCL4OwaPVS-8Wxm80Z7r3qrdedS9NM6G3XnUfcLkPaPMFFn9be5EdcL8DsHtz5dDrAA4rwML5zq8uavdPxA8SOIie</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72971141</pqid></control><display><type>article</type><title>Effect of slow-curing on cavity wall adaptation using a new intensity-changeable light source</title><source>ScienceDirect Freedom Collection</source><creator>Uno, Shigeru ; Tanaka, Toru ; Natsuizaka, Asuka ; Abo, Tomoko</creator><creatorcontrib>Uno, Shigeru ; Tanaka, Toru ; Natsuizaka, Asuka ; Abo, Tomoko</creatorcontrib><description>Objective. The purpose of the study was to investigate the effects of a new intensity-changeable light source Curetron 7 (CT-7) devised for the slow-curing on cavity wall adaptation in the adhesive composite restorations, as well as the microhardness of the cured composite. Methods. Microhardness of both top and bottom surfaces was measured by an indentation method for 2 mm thick cylindrical specimens, and cavity adaptation was evaluated in cylindrical dentin cavities (∅ 3.5×1.5 mm 2) of human extracted molars bonded to a hybrid resin composite. The irradiation was done with CT-7, VIP or Candelux (CDX) under the following five conditions: CT1, 600 mW/cm 2×30 s (CT-7); CT2, 230 mW/cm 2×20 s+600 mW/cm 2×20 s (CT-7); CT3, 230 mW/cm 2×20 s+pause×10 s+600 mW/cm 2×20 s (CT-7); VIP, 300 mW/cm 2×3 s+pause×3 min+600 mW/cm 2×30 s (VIP); CDX, 200 mW/cm 2×10 s+600 mW/cm 2×30 s. Results. Five irradiation conditions had no influence on the microhardness for either top or bottom surface (Scheffe, p&gt;0.05). In conditions CT3, VIP and CDX, top surfaces were harder than bottom surfaces (Student's t-test, p&lt;0.05). The statistical analysis revealed no difference in adaptation among the locations along the cavity walls for each irradiation conditions (Kruskal–Wallis, p&gt;0.05). In comparison of poled data for each condition, the best adaptation was seen in condition CT3, and the second in condition VIP (Kruskal–Wallis, p&lt;0.05). Significance. These results proved the efficacy of the slow-curing method combined with the interval between two irradiations with low intensity and high intensity. CT-7 could be useful for the adhesive composite restorations.</description><identifier>ISSN: 0109-5641</identifier><identifier>EISSN: 1879-0097</identifier><identifier>DOI: 10.1016/S0109-5641(02)00023-4</identifier><identifier>PMID: 12543120</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Analysis of Variance ; Cavity adaptation ; Composite Resins - radiation effects ; Contraction stress ; Dental Equipment ; Dental Marginal Adaptation ; Dental Restoration, Permanent - methods ; Dentin ; Dentistry ; Hardness - radiation effects ; Humans ; Light ; Light source ; Materials Testing ; Molar ; Polymerization ; Polymers - chemistry ; Resin composite ; Slow-curing ; Statistics, Nonparametric</subject><ispartof>Dental materials, 2003-03, Vol.19 (2), p.147-152</ispartof><rights>2002 Academy of Dental Materials</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-c2d9e73fc996cc6cb21a184ca97d0dbf9ea3839968d3f126b0bcc084a4f878b43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12543120$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Uno, Shigeru</creatorcontrib><creatorcontrib>Tanaka, Toru</creatorcontrib><creatorcontrib>Natsuizaka, Asuka</creatorcontrib><creatorcontrib>Abo, Tomoko</creatorcontrib><title>Effect of slow-curing on cavity wall adaptation using a new intensity-changeable light source</title><title>Dental materials</title><addtitle>Dent Mater</addtitle><description>Objective. The purpose of the study was to investigate the effects of a new intensity-changeable light source Curetron 7 (CT-7) devised for the slow-curing on cavity wall adaptation in the adhesive composite restorations, as well as the microhardness of the cured composite. Methods. Microhardness of both top and bottom surfaces was measured by an indentation method for 2 mm thick cylindrical specimens, and cavity adaptation was evaluated in cylindrical dentin cavities (∅ 3.5×1.5 mm 2) of human extracted molars bonded to a hybrid resin composite. The irradiation was done with CT-7, VIP or Candelux (CDX) under the following five conditions: CT1, 600 mW/cm 2×30 s (CT-7); CT2, 230 mW/cm 2×20 s+600 mW/cm 2×20 s (CT-7); CT3, 230 mW/cm 2×20 s+pause×10 s+600 mW/cm 2×20 s (CT-7); VIP, 300 mW/cm 2×3 s+pause×3 min+600 mW/cm 2×30 s (VIP); CDX, 200 mW/cm 2×10 s+600 mW/cm 2×30 s. Results. Five irradiation conditions had no influence on the microhardness for either top or bottom surface (Scheffe, p&gt;0.05). In conditions CT3, VIP and CDX, top surfaces were harder than bottom surfaces (Student's t-test, p&lt;0.05). The statistical analysis revealed no difference in adaptation among the locations along the cavity walls for each irradiation conditions (Kruskal–Wallis, p&gt;0.05). In comparison of poled data for each condition, the best adaptation was seen in condition CT3, and the second in condition VIP (Kruskal–Wallis, p&lt;0.05). Significance. These results proved the efficacy of the slow-curing method combined with the interval between two irradiations with low intensity and high intensity. CT-7 could be useful for the adhesive composite restorations.</description><subject>Analysis of Variance</subject><subject>Cavity adaptation</subject><subject>Composite Resins - radiation effects</subject><subject>Contraction stress</subject><subject>Dental Equipment</subject><subject>Dental Marginal Adaptation</subject><subject>Dental Restoration, Permanent - methods</subject><subject>Dentin</subject><subject>Dentistry</subject><subject>Hardness - radiation effects</subject><subject>Humans</subject><subject>Light</subject><subject>Light source</subject><subject>Materials Testing</subject><subject>Molar</subject><subject>Polymerization</subject><subject>Polymers - chemistry</subject><subject>Resin composite</subject><subject>Slow-curing</subject><subject>Statistics, Nonparametric</subject><issn>0109-5641</issn><issn>1879-0097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhiMEYuPjJ4ByQnAoJGnWNieEpvEhTeIAHFGUus4W1LUjaTft39NuExw5WbIf-5UfQi44u-WMJ3dvjDMVjRLJr5m4YYyJOJIHZMizVEWMqfSQDH-RATkJ4auDpFD8mAy4GMmYCzYknxNrERpaWxrKeh1B6101o3VFwaxcs6FrU5bUFGbZmMZ17Tb0c0MrXFNXNViFjopgbqoZmrxEWrrZvKGhbj3gGTmypgx4vq-n5ONx8j5-jqavTy_jh2kEUqRNBKJQmMYWlEoAEsgFNzyTYFRasCK3Ck2cxd0wK2LLRZKzHIBl0kibpVku41Nytbu79PV3i6HRCxcAy9JUWLdBp0KlnEvegaMdCL4OwaPVS-8Wxm80Z7r3qrdedS9NM6G3XnUfcLkPaPMFFn9be5EdcL8DsHtz5dDrAA4rwML5zq8uavdPxA8SOIie</recordid><startdate>20030301</startdate><enddate>20030301</enddate><creator>Uno, Shigeru</creator><creator>Tanaka, Toru</creator><creator>Natsuizaka, Asuka</creator><creator>Abo, Tomoko</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030301</creationdate><title>Effect of slow-curing on cavity wall adaptation using a new intensity-changeable light source</title><author>Uno, Shigeru ; Tanaka, Toru ; Natsuizaka, Asuka ; Abo, Tomoko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-c2d9e73fc996cc6cb21a184ca97d0dbf9ea3839968d3f126b0bcc084a4f878b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Analysis of Variance</topic><topic>Cavity adaptation</topic><topic>Composite Resins - radiation effects</topic><topic>Contraction stress</topic><topic>Dental Equipment</topic><topic>Dental Marginal Adaptation</topic><topic>Dental Restoration, Permanent - methods</topic><topic>Dentin</topic><topic>Dentistry</topic><topic>Hardness - radiation effects</topic><topic>Humans</topic><topic>Light</topic><topic>Light source</topic><topic>Materials Testing</topic><topic>Molar</topic><topic>Polymerization</topic><topic>Polymers - chemistry</topic><topic>Resin composite</topic><topic>Slow-curing</topic><topic>Statistics, Nonparametric</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uno, Shigeru</creatorcontrib><creatorcontrib>Tanaka, Toru</creatorcontrib><creatorcontrib>Natsuizaka, Asuka</creatorcontrib><creatorcontrib>Abo, Tomoko</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Dental materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uno, Shigeru</au><au>Tanaka, Toru</au><au>Natsuizaka, Asuka</au><au>Abo, Tomoko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of slow-curing on cavity wall adaptation using a new intensity-changeable light source</atitle><jtitle>Dental materials</jtitle><addtitle>Dent Mater</addtitle><date>2003-03-01</date><risdate>2003</risdate><volume>19</volume><issue>2</issue><spage>147</spage><epage>152</epage><pages>147-152</pages><issn>0109-5641</issn><eissn>1879-0097</eissn><abstract>Objective. The purpose of the study was to investigate the effects of a new intensity-changeable light source Curetron 7 (CT-7) devised for the slow-curing on cavity wall adaptation in the adhesive composite restorations, as well as the microhardness of the cured composite. Methods. Microhardness of both top and bottom surfaces was measured by an indentation method for 2 mm thick cylindrical specimens, and cavity adaptation was evaluated in cylindrical dentin cavities (∅ 3.5×1.5 mm 2) of human extracted molars bonded to a hybrid resin composite. The irradiation was done with CT-7, VIP or Candelux (CDX) under the following five conditions: CT1, 600 mW/cm 2×30 s (CT-7); CT2, 230 mW/cm 2×20 s+600 mW/cm 2×20 s (CT-7); CT3, 230 mW/cm 2×20 s+pause×10 s+600 mW/cm 2×20 s (CT-7); VIP, 300 mW/cm 2×3 s+pause×3 min+600 mW/cm 2×30 s (VIP); CDX, 200 mW/cm 2×10 s+600 mW/cm 2×30 s. Results. Five irradiation conditions had no influence on the microhardness for either top or bottom surface (Scheffe, p&gt;0.05). In conditions CT3, VIP and CDX, top surfaces were harder than bottom surfaces (Student's t-test, p&lt;0.05). The statistical analysis revealed no difference in adaptation among the locations along the cavity walls for each irradiation conditions (Kruskal–Wallis, p&gt;0.05). In comparison of poled data for each condition, the best adaptation was seen in condition CT3, and the second in condition VIP (Kruskal–Wallis, p&lt;0.05). Significance. These results proved the efficacy of the slow-curing method combined with the interval between two irradiations with low intensity and high intensity. CT-7 could be useful for the adhesive composite restorations.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>12543120</pmid><doi>10.1016/S0109-5641(02)00023-4</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0109-5641
ispartof Dental materials, 2003-03, Vol.19 (2), p.147-152
issn 0109-5641
1879-0097
language eng
recordid cdi_proquest_miscellaneous_72971141
source ScienceDirect Freedom Collection
subjects Analysis of Variance
Cavity adaptation
Composite Resins - radiation effects
Contraction stress
Dental Equipment
Dental Marginal Adaptation
Dental Restoration, Permanent - methods
Dentin
Dentistry
Hardness - radiation effects
Humans
Light
Light source
Materials Testing
Molar
Polymerization
Polymers - chemistry
Resin composite
Slow-curing
Statistics, Nonparametric
title Effect of slow-curing on cavity wall adaptation using a new intensity-changeable light source
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A58%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20slow-curing%20on%20cavity%20wall%20adaptation%20using%20a%20new%20intensity-changeable%20light%20source&rft.jtitle=Dental%20materials&rft.au=Uno,%20Shigeru&rft.date=2003-03-01&rft.volume=19&rft.issue=2&rft.spage=147&rft.epage=152&rft.pages=147-152&rft.issn=0109-5641&rft.eissn=1879-0097&rft_id=info:doi/10.1016/S0109-5641(02)00023-4&rft_dat=%3Cproquest_cross%3E72971141%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-c2d9e73fc996cc6cb21a184ca97d0dbf9ea3839968d3f126b0bcc084a4f878b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=72971141&rft_id=info:pmid/12543120&rfr_iscdi=true