Loading…

Bending the primary cilium opens Ca2+-sensitive intermediate-conductance K+ channels in MDCK cells

Increasing tubular fluid flow rate has previously been shown to induce K+ secretion in mammalian cortical collecting duct. The mechanism responsible was examined in the present study using MDCK cells as a model. The change in membrane potential difference (EM) of MDCK cells was measured with a fluor...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of membrane biology 2003-02, Vol.191 (3), p.193-200
Main Authors: Praetorius, H A, Frokiaer, J, Nielsen, S, Spring, K R
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Increasing tubular fluid flow rate has previously been shown to induce K+ secretion in mammalian cortical collecting duct. The mechanism responsible was examined in the present study using MDCK cells as a model. The change in membrane potential difference (EM) of MDCK cells was measured with a fluorescent voltage-sensitive dye, DiBAC4(3), when the cell's primary cilium was continuously bent with a micropipette or by the flow of perfusate. Bending the cilium produced a hyperpolarization of the membrane that lagged behind the increase in intracellular Ca2+ concentration by an average of 36 seconds. Gd3+, an inhibitor of the flow-induced Ca2+ increase, prevented the hyperpolarization. Blocking K+ channels with Ba2+ reduced the flow-induced hyperpolarization, implying that it resulted from activation of Ca2+-sensitive K+ channels. Further studies demonstrated that the hyperpolarization was diminished by the blocker of Ca2+-activated K+ channels, charybdotoxin, whereas iberiotoxin or apamin had no effect, results consistent with the activation of intermediate-conductance Ca2+-sensitive K+ channels. RT-PCR analysis and sequencing confirmed the presence of intermediate-conductance K+ channels in MDCK cells. We conclude that the increase in intracellular Ca2+ associated with bending of the primary cilium is the cause of the hyperpolarization and increased K+ conductance in MDCK cells.
ISSN:0022-2631
1432-1424
DOI:10.1007/s00232-002-1055-z