Loading…
Carbohydrate-induced Differential Gene Expression Patterns in the Hyperthermophilic Bacterium Thermotoga maritima
The hyperthermophilic bacterium Thermotoga maritima MSB8 was grown on a variety of carbohydrates to determine the influence of carbon and energy source on differential gene expression. Despite the fact that T. maritima has been phylogenetically characterized as a primitive microorganism from an evol...
Saved in:
Published in: | The Journal of biological chemistry 2003-02, Vol.278 (9), p.7540-7552 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The hyperthermophilic bacterium Thermotoga maritima MSB8 was grown on a variety of carbohydrates to determine the influence of carbon and energy source on differential gene
expression. Despite the fact that T. maritima has been phylogenetically characterized as a primitive microorganism from an evolutionary perspective, results here suggest
that it has versatile and discriminating mechanisms for regulating and effecting complex carbohydrate utilization. Growth
of T. maritima on monosaccharides was found to be slower than growth on polysaccharides, although growth to cell densities of 10 8 to 10 9 cells/ml was observed on all carbohydrates tested. Differential expression of genes encoding carbohydrate-active proteins
encoded in the T. maritima genome was followed using a targeted cDNA microarray in conjunction with mixed model statistical analysis. Coordinated regulation
of genes responding to specific carbohydrates was noted. Although glucose generally repressed expression of all glycoside
hydrolase genes, other sugars induced or repressed these genes to varying extents. Expression profiles of most endo-acting
glycoside hydrolase genes correlated well with their reported biochemical properties, although exo-acting glycoside hydrolase
genes displayed less specific expression patterns. Genes encoding selected putative ABC sugar transporters were found to respond
to specific carbohydrates, and in some cases putative oligopeptide transporter genes were also found to respond to specific
sugar substrates. Several genes encoding putative transcriptional regulators were expressed during growth on specific sugars,
thus suggesting functional assignments. The transcriptional response of T. maritima to specific carbohydrate growth substrates indicated that sugar backbone- and linkage-specific regulatory networks are operational
in this organism during the uptake and utilization of carbohydrate substrates. Furthermore, the wide ranging collection of
such networks in T. maritima suggests that this organism is capable of adapting to a variety of growth environments containing carbohydrate growth substrates. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M211748200 |