Loading…
Fructan 1-Exohydrolases. β-(2,1)-Trimmers during Graminan Biosynthesis in Stems of Wheat? Purification, Characterization, Mass Mapping, and Cloning of Two Fructan 1-Exohydrolase Isoforms
Graminan-type fructans are temporarily stored in wheat (Triticum aestivum) stems. Two phases can be distinguished: a phase of fructan biosynthesis (green stems) followed by a breakdown phase (stems turning yellow). So far, no plant fructan exohydrolase enzymes have been cloned from a monocotyledonou...
Saved in:
Published in: | Plant physiology (Bethesda) 2003-02, Vol.131 (2), p.621-631 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Graminan-type fructans are temporarily stored in wheat (Triticum aestivum) stems. Two phases can be distinguished: a phase of fructan biosynthesis (green stems) followed by a breakdown phase (stems turning yellow). So far, no plant fructan exohydrolase enzymes have been cloned from a monocotyledonous species. Here, we report on the cloning, purification, and characterization of two fructan 1-exohydrolase cDNAs (1-FEH w1 and w2) from winter wheat stems. Similar to dicot plant 1-FEHs, they are derived from a special group within the cell wall-type invertases characterized by their low isoelectric points. The corresponding isoenzymes were purified to electrophoretic homogeneity, and their mass spectra were determined by quadrupole-time-of-flight mass spectrometry. Characterization of the purified enzymes revealed that inulin-type fructans [β-(2,1)] are much better substrates than levan-type fructans [β-(2,6)]. Although both enzymes are highly identical (98% identity), they showed different substrate specificity toward branched wheat stem fructans. Although 1-FEH activities were found to be considerably higher during the fructan breakdown phase, it was possible to purify substantial amounts of 1-FEH w2 from young, fructan biosynthesizing wheat stems, suggesting that this isoenzyme might play a role as a β-(2,1)-trimmer throughout the period of active graminan biosynthesis. In this way, the species and developmental stage-specific complex fructan patterns found in monocots might be determined by the relative proportions and specificities of both fructan biosynthetic and breakdown enzymes. |
---|---|
ISSN: | 0032-0889 1532-2548 |
DOI: | 10.1104/pp.015305 |