Loading…

SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae

Mutations in the Saccharomyces cerevisiae gene SPT15, which encodes the TATA-binding protein TFIID, have been shown to cause pleiotropic phenotypes and to lead to changes in transcription in vivo. Here, we report the cloning and analysis of one such mutation, spt15-21, which causes a single-amino-ac...

Full description

Saved in:
Bibliographic Details
Published in:Genes & development 1992-07, Vol.6 (7), p.1319-1331
Main Authors: EISENMANN, D. M, ARNDT, K. M, RICUPERO, S. L, ROONEY, J. W, WINSTON, F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mutations in the Saccharomyces cerevisiae gene SPT15, which encodes the TATA-binding protein TFIID, have been shown to cause pleiotropic phenotypes and to lead to changes in transcription in vivo. Here, we report the cloning and analysis of one such mutation, spt15-21, which causes a single-amino-acid substitution in a conserved residue of TFIID. Surprisingly, the spt15-21 mutation does not affect the stability of TFIID, its ability to bind to DNA or to support basal transcription in vitro, or the ability of an upstream activator to function in vivo. To study further the spt15-21 defect, extragenic suppressors of this mutation were isolated and analyzed. All of the extragenic suppressors of spt15-21 are mutations in the previously identified SPT3 gene. Suppression of spt15-21 by these spt3 mutations is allele-specific, suggesting that TFIID and SPT3 interact and that spt15-21 impairs this interaction in some way. Consistent with these genetic data, coimmunoprecipitation experiments demonstrate that the TFIID and SPT3 proteins are physically associated in yeast extracts. Taken together, these results suggest that SPT3 is a TFIID-associated protein, required for TFIID to function at particular promoters in vivo.
ISSN:0890-9369
1549-5477
DOI:10.1101/gad.6.7.1319