Loading…

Evaluation of phenylboronate agarose for industrial-scale purification of erythropoietin from mammalian cell cultures

The search for novel, cost-effective ways to produce erythropoietin (Epo), the world top-selling biopharmaceutical, is a major challenge for today's biotechnology industry. However, Epo's high glycosylation content (almost 40% of total mass) and the requirement for sialic acid for optimal...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biotechnology 2003-03, Vol.101 (3), p.275-287
Main Authors: Zanette, Dino, Soffientini, Adolfo, Sottani, Cristina, Sarubbi, Edoardo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The search for novel, cost-effective ways to produce erythropoietin (Epo), the world top-selling biopharmaceutical, is a major challenge for today's biotechnology industry. However, Epo's high glycosylation content (almost 40% of total mass) and the requirement for sialic acid for optimal in vivo activity still make mammalian cells the expression system of choice. In contrast to the abundance of reports on Epo production, robust, cost-effective methods for large-scale Epo purification can hardly be found in literature. To fill this gap, we describe here a process specifically studied for industrial-scale purification of the protein. Our method is based on the ability of phenylboronate agarose (PBA) to form reversible complexes with 1,2- cis-diol-containing molecules, like sugars in glycoproteins. Finding that additional factors (i.e., ionic and hydrophobic interactions) contribute to the Epo–PBA binding reaction, chromatography conditions have been optimized in scale-down experiments to improve selectivity and yield. As a result, the high performance of affinity chromatography has been achieved using a support possessing the robustness, chemical stability and low cost of a small synthetic ligand. By adding an anion exchange chromatography step and gel filtration for polishing, a pure and active product can easily be obtained by an integrated, start-to-end process optimized for industrial-scale operations.
ISSN:0168-1656
1873-4863
DOI:10.1016/S0168-1656(02)00357-7