Loading…
Neural Networks in the Prediction of Survival in Patients with Colorectal Cancer
It is important to predict outcome for colorectal cancer patients following surgery, as almost 50% of patients undergoing a potentially curative resection will experience relapse. It is clear that present prognostic categories such as Dukes or TNM staging are too broad, and further refining is requi...
Saved in:
Published in: | Clinical colorectal cancer 2003-02, Vol.2 (4), p.239-244 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It is important to predict outcome for colorectal cancer patients following surgery, as almost 50% of patients undergoing a potentially curative resection will experience relapse. It is clear that present prognostic categories such as Dukes or TNM staging are too broad, and further refining is required to prognosticate for high-risk subgroups. One approach is to determine a phenotype associated with recurrence. We compared 2 methods of analyzing such data. Pathologic data from a large clinical trial was analyzed for 403 patients. The outcome modeled was disease recurrence. The results from logistic regression analysis and a neural network approach are compared with respect to receiver operator characteristic plots, which estimate the fit of the model. The best logistic regression model gives a result of 66%, and the neural network approach 78%. The conclusion from this study is that the neural network approach is superior to regression analysis. Further analyses are in progress using a larger patient sample size (n > 1000), improved statistical models, and a more refined neural network. |
---|---|
ISSN: | 1533-0028 1938-0674 |
DOI: | 10.3816/CCC.2003.n.005 |