Loading…

Structural characterization of neutral oligosaccharide mixtures through a combination of capillary electrochromatography and ion trap tandem mass spectrometry

A CEC/ESI-MS/MS combined system has been developed for the separation and on-line structural analysis of neutral oligosaccharides. Various types of isomeric oligosaccharides were first successfully separated by CEC using polar monolithic columns, while the on-line tandem mass spectrometry has been e...

Full description

Saved in:
Bibliographic Details
Published in:Analytical and bioanalytical chemistry 2003-03, Vol.375 (5), p.599-608
Main Authors: Que, Amy H, Novotny, Milos V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A CEC/ESI-MS/MS combined system has been developed for the separation and on-line structural analysis of neutral oligosaccharides. Various types of isomeric oligosaccharides were first successfully separated by CEC using polar monolithic columns, while the on-line tandem mass spectrometry has been explored to differentiate and elucidate the structures of isomeric oligosaccharides. The experimentally obtained tandem spectra usually provide sequence, branching, and linkage information. Oligosaccharide isomers with a different monomeric composition and branching showed different patterns of glycosidic linkage cleavage (B- and Y-ion series), allowing us to deduce their sequence and branching points. Isomers with different linkages were distinguished by identifying cross-ring fragment ions (A-ion series). While (1-->4) linkages yielded dominant (0,2)A ions, (1-->6) linkages showed an extensive and complete cross-ring cleavage series: (0,2)A, (0,3)A, and (0,4)A ions. Although the anomeric configurations and monosaccharide identification are rarely obtained from tandem MS, the relevant mixture components can be completely resolved with high-efficiency CEC columns featuring a polar functionality.
ISSN:1618-2642
DOI:10.1007/s00216-003-1766-8