Loading…

Growth and stomata development of Arabidopsis hypocotyls are controlled by gibberellins and modulated by ethylene and auxins

Summary The plant hormones gibberellin (GA), ethylene and auxin can promote hypocotyl elongation of Arabidopsis seedlings grown in the light on a low nutrient medium (LNM). In this study, we used hypocotyl elongation as a system to investigate interactions between GA and ethylene or auxin and analys...

Full description

Saved in:
Bibliographic Details
Published in:The Plant journal : for cell and molecular biology 2003-03, Vol.33 (6), p.989-1000
Main Authors: Saibo, Nelson J. M., Vriezen, Wim H., Beemster, Gerrit T. S., Van Der Straeten, Dominique
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary The plant hormones gibberellin (GA), ethylene and auxin can promote hypocotyl elongation of Arabidopsis seedlings grown in the light on a low nutrient medium (LNM). In this study, we used hypocotyl elongation as a system to investigate interactions between GA and ethylene or auxin and analysed their influence on the development of stomata in the hypocotyl. When applied together, GA and ethylene or auxin exerted a synergistic effect on hypocotyl elongation. Stimulated cell elongation is the main cause of hypocotyl elongation. Furthermore, hypocotyls treated with GA plus either ethylene or auxin show an increased endoreduplication. In addition, a small but significant increase in cell number was observed in the cortical cell files of hypocotyls treated with ethylene and GA together. However, studies with transgenic seedlings expressing CycB1::uidA genes revealed that cell division in the hypocotyl occurs only in the epidermis and mainly to form stomata, a process strictly regulated by hormones. Stomata formation in the hypocotyl is induced by the treatment with either GA or ethylene. The effect of GA could be strongly enhanced by the simultaneous addition of ethylene or auxin to the growth medium. Gibberellin is the main signal inducing stomata formation in the hypocotyl. In addition, this signal regulates hypocotyl elongation and is modulated by ethylene and auxin. The implication of these three hormones in relation to cell division and stomata formation is discussed.
ISSN:0960-7412
1365-313X
DOI:10.1046/j.1365-313X.2003.01684.x