Loading…
Parathyroid Hormone Enhances Mechanically Induced Bone Formation, Possibly Involving L-Type Voltage-Sensitive Calcium Channels
PTH and mechanical loading might act synergistically on bone formation. We tested the in vivo effect of the L-type voltage-sensitive calcium channel (VSCC) blocker, verapamil, on bone formation induced by human PTH-(1–34) (PTH) injection with or without mechanical loading. Adult rats were divided in...
Saved in:
Published in: | Endocrinology (Philadelphia) 2003-04, Vol.144 (4), p.1226-1233 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | PTH and mechanical loading might act synergistically on bone formation. We tested the in vivo effect of the L-type voltage-sensitive calcium channel (VSCC) blocker, verapamil, on bone formation induced by human PTH-(1–34) (PTH) injection with or without mechanical loading. Adult rats were divided into eight groups: vehicle, verapamil, PTH, or verapamil plus PTH with or without mechanical loading. Verapamil (100 mg/kg) was given orally 90 min before loading. PTH (80 μg/kg) was injected sc 30 min before loading. Loading applied to tibia and ulna for 3 min significantly increased the bone formation rate on both the endocortical surface of tibia and the periosteal surface of ulna (P < 0.0001). Treatment with PTH enhanced load-induced bone formation by 53% and 76% (P < 0.001) on the endocortical and periosteal surfaces, respectively. Treatment with verapamil suppressed load-induced bone formation rate by 77% and 59% (P < 0.01). Furthermore, verapamil suppressed bone formation in rats subjected to PTH plus loading by 74% and 68% (P < 0.0001) at the tibia and ulna, respectively. In the groups without loading, neither verapamil nor PTH treatment significantly changed any bone formation parameter. This study indicates that L-type VSCCs mediate load-induced bone formation in vivo. Furthermore, PTH enhances load-induced bone adaptation through involvement of L-type VSCCs. |
---|---|
ISSN: | 0013-7227 1945-7170 |
DOI: | 10.1210/en.2002-220821 |