Loading…

DM Loss in k Haplotype Mice Reveals Isotype-Specific Chaperone Requirements

DM actions as a class II chaperone promote capture of diverse peptides inside the endocytic compartment(s). DM mutant cells studied to date express class II bound by class II-associated invariant chain-derived peptide (CLIP), a short proteolytic fragment of the invariant chain, and exhibit defective...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of immunology (1950) 2003-04, Vol.170 (7), p.3751-3761
Main Authors: Koonce, Chad H, Wutz, Gordana, Robertson, Elizabeth J, Vogt, Anne B, Kropshofer, Harald, Bikoff, Elizabeth K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:DM actions as a class II chaperone promote capture of diverse peptides inside the endocytic compartment(s). DM mutant cells studied to date express class II bound by class II-associated invariant chain-derived peptide (CLIP), a short proteolytic fragment of the invariant chain, and exhibit defective peptide-loading abilities. To evaluate DM functional contributions in k haplotype mice, we engineered a novel mutation at the DMa locus via embryonic stem cell technology. The present experiments demonstrate short-lived A(k)/CLIP complexes, decreased A(k) surface expression, and enhanced A(k) peptide binding activities. Thus, we conclude that DM loss in k haplotype mice creates a substantial pool of empty or loosely occupied A(k) conformers. On the other hand, the mutation hardly affects E(k) activities. The appearance of mature compact E(k) dimers, near normal surface expression, and efficient Ag presentation capabilities strengthen the evidence for isotype-specific DM requirements. In contrast to DM mutants described previously, partial occupancy by wild-type ligands is sufficient to eliminate antiself reactivity. Mass spectrometry profiles reveal A(k)/CLIP and a heterogeneous collection of relatively short peptides bound to E(k) molecules. These experiments demonstrate that DM has distinct roles depending on its specific class II partners.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.170.7.3751