Loading…

Proteolytic stress: A unifying concept for the etiopathogenesis of Parkinson's disease

The etiopathogenesis of Parkinson's disease (PD) has been elusive. Recently, several lines of evidence have converged to suggest that defects in the ubiquitin‐proteasome system and proteolytic stress underlie nigral pathology in both familial and sporadic forms of the illness. In support of thi...

Full description

Saved in:
Bibliographic Details
Published in:Annals of neurology 2003, Vol.53 (S3), p.S73-S86
Main Authors: McNaught, Kevin St. P., Olanow, C. Warren
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The etiopathogenesis of Parkinson's disease (PD) has been elusive. Recently, several lines of evidence have converged to suggest that defects in the ubiquitin‐proteasome system and proteolytic stress underlie nigral pathology in both familial and sporadic forms of the illness. In support of this concept, mutations in α‐synuclein that cause the protein to misfold and resist proteasomal degradation cause familial PD. Similarly, mutations in two enzymes involved in the normal function of the ubiquitin‐proteasome system, parkin and ubiquitin C‐terminal hydrolase L1, are also associated with hereditary PD. Furthermore, structural and function defects in 26/20S proteasomes with accumulation and aggregation of potentially cytotoxic abnormal proteins have been identified in the substantia nigra pars compacta of patients with sporadic PD. Thus, a defect in protein handling appears to be a common factor in sporadic and the various familial forms of PD. This hypothesis may also account for the vulnerability of the substantia nigra pars compacta in PD, why the disorder is age related, and the nature of the Lewy body. It has also facilitated the development of experimental models that recapitulate the behavioral and pathological features of PD, and hopefully will lead to the development of novel neuroprotective therapies for the disorder. Ann Neurol 2003;53 (suppl 3):S73–S86
ISSN:0364-5134
1531-8249
DOI:10.1002/ana.10512