Loading…

Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate

Universal logic gates for two quantum bits (qubits) form an essential ingredient of quantum computation. Dynamical gates have been proposed in the context of trapped ions; however, geometric phase gates (which change only the phase of the physical qubits) offer potential practical advantages because...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2003-03, Vol.422 (6930), p.412-415
Main Authors: Wineland, D. J, Leibfried, D, DeMarco, B, Meyer, V, Lucas, D, Barrett, M, Britton, J, Itano, W. M, Jelenkovi, B, Langer, C, Rosenband, T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c639t-1bd26d8837e63e0ccd7f03030d2af6fa7f68356af76330e8cae59839990e7f113
cites cdi_FETCH-LOGICAL-c639t-1bd26d8837e63e0ccd7f03030d2af6fa7f68356af76330e8cae59839990e7f113
container_end_page 415
container_issue 6930
container_start_page 412
container_title Nature (London)
container_volume 422
creator Wineland, D. J
Leibfried, D
DeMarco, B
Meyer, V
Lucas, D
Barrett, M
Britton, J
Itano, W. M
Jelenkovi, B
Langer, C
Rosenband, T
description Universal logic gates for two quantum bits (qubits) form an essential ingredient of quantum computation. Dynamical gates have been proposed in the context of trapped ions; however, geometric phase gates (which change only the phase of the physical qubits) offer potential practical advantages because they have higher intrinsic resistance to certain small errors and might enable faster gate implementation. Here we demonstrate a universal geometric π-phase gate between two beryllium ion-qubits, based on coherent displacements induced by an optical dipole force. The displacements depend on the internal atomic states; the motional state of the ions is unimportant provided that they remain in the regime in which the force can be considered constant over the extent of each ion's wave packet. By combining the gate with single-qubit rotations, we have prepared ions in an entangled Bell state with 97% fidelity-about six times better than in a previous experiment demonstrating a universal gate between two ion-qubits. The particular properties of the gate make it attractive for a multiplexed trap architecture that would enable scaling to large numbers of ion-qubits.
doi_str_mv 10.1038/nature01492
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_73137130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A187661682</galeid><sourcerecordid>A187661682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c639t-1bd26d8837e63e0ccd7f03030d2af6fa7f68356af76330e8cae59839990e7f113</originalsourceid><addsrcrecordid>eNqF0kGL1DAUB_AiijuunrxLXFAQ7Zo0bZIeh2HVhUVBV_QWMulLJ0vbdJIUd7-9WWZwZmRE3iEQfvmHvLwse07wOcFUvB9UnDxgUtbFg2xGSs7ykgn-MJthXIgcC8pOsich3GCMK8LLx9kJKRjDnItZ9vPidgRvexii6lADvRtC9CpaNyBnkELeLacQ36GVbVe5sQ10Nt6hFlwP0VuN4i-HEs7X09JGNK5UANSqCE-zR0Z1AZ5t19Ps-4eL68Wn_OrLx8vF_CrXjNYxJ8umYI0QlAOjgLVuuME0VVMow4zihglaMWU4oxSD0AqqWtC6rjFwQwg9zV5vckfv1hOEKHsbNHSdGsBNQXJKKCcp8X-wEKIoaEUTPPsL3rjJD-kRssBlVeKqLBPKN6hVHUg7GJe6plsYwKvODWBs2p4TwRkjTBS70AOvR7uW--j8CEqV_sXqo6lvDg4kE-E2tmoKQV5--3po3_7bzq9_LD4f1dq7EDwYOaYpUf5OEizvx07ujV3SL7Ytm5Y9NDu7nbMEXm2BClp1xqtB27BzJcOClPfu5cZt0v-A_ct-A44l6Ek</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204540544</pqid></control><display><type>article</type><title>Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate</title><source>Nature</source><creator>Wineland, D. J ; Leibfried, D ; DeMarco, B ; Meyer, V ; Lucas, D ; Barrett, M ; Britton, J ; Itano, W. M ; Jelenkovi, B ; Langer, C ; Rosenband, T</creator><creatorcontrib>Wineland, D. J ; Leibfried, D ; DeMarco, B ; Meyer, V ; Lucas, D ; Barrett, M ; Britton, J ; Itano, W. M ; Jelenkovi, B ; Langer, C ; Rosenband, T</creatorcontrib><description>Universal logic gates for two quantum bits (qubits) form an essential ingredient of quantum computation. Dynamical gates have been proposed in the context of trapped ions; however, geometric phase gates (which change only the phase of the physical qubits) offer potential practical advantages because they have higher intrinsic resistance to certain small errors and might enable faster gate implementation. Here we demonstrate a universal geometric π-phase gate between two beryllium ion-qubits, based on coherent displacements induced by an optical dipole force. The displacements depend on the internal atomic states; the motional state of the ions is unimportant provided that they remain in the regime in which the force can be considered constant over the extent of each ion's wave packet. By combining the gate with single-qubit rotations, we have prepared ions in an entangled Bell state with 97% fidelity-about six times better than in a previous experiment demonstrating a universal gate between two ion-qubits. The particular properties of the gate make it attractive for a multiplexed trap architecture that would enable scaling to large numbers of ion-qubits.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature01492</identifier><identifier>PMID: 12660778</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing</publisher><subject>Beryllium ; Classical and quantum physics: mechanics and fields ; Exact sciences and technology ; Gates ; Geometry ; Information processing ; Ions ; Physics ; Quantum computation ; Quantum information ; Quantum theory</subject><ispartof>Nature (London), 2003-03, Vol.422 (6930), p.412-415</ispartof><rights>2003 INIST-CNRS</rights><rights>COPYRIGHT 2003 Nature Publishing Group</rights><rights>Copyright Macmillan Journals Ltd. Mar 27, 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c639t-1bd26d8837e63e0ccd7f03030d2af6fa7f68356af76330e8cae59839990e7f113</citedby><cites>FETCH-LOGICAL-c639t-1bd26d8837e63e0ccd7f03030d2af6fa7f68356af76330e8cae59839990e7f113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14608148$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12660778$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wineland, D. J</creatorcontrib><creatorcontrib>Leibfried, D</creatorcontrib><creatorcontrib>DeMarco, B</creatorcontrib><creatorcontrib>Meyer, V</creatorcontrib><creatorcontrib>Lucas, D</creatorcontrib><creatorcontrib>Barrett, M</creatorcontrib><creatorcontrib>Britton, J</creatorcontrib><creatorcontrib>Itano, W. M</creatorcontrib><creatorcontrib>Jelenkovi, B</creatorcontrib><creatorcontrib>Langer, C</creatorcontrib><creatorcontrib>Rosenband, T</creatorcontrib><title>Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>Universal logic gates for two quantum bits (qubits) form an essential ingredient of quantum computation. Dynamical gates have been proposed in the context of trapped ions; however, geometric phase gates (which change only the phase of the physical qubits) offer potential practical advantages because they have higher intrinsic resistance to certain small errors and might enable faster gate implementation. Here we demonstrate a universal geometric π-phase gate between two beryllium ion-qubits, based on coherent displacements induced by an optical dipole force. The displacements depend on the internal atomic states; the motional state of the ions is unimportant provided that they remain in the regime in which the force can be considered constant over the extent of each ion's wave packet. By combining the gate with single-qubit rotations, we have prepared ions in an entangled Bell state with 97% fidelity-about six times better than in a previous experiment demonstrating a universal gate between two ion-qubits. The particular properties of the gate make it attractive for a multiplexed trap architecture that would enable scaling to large numbers of ion-qubits.</description><subject>Beryllium</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Exact sciences and technology</subject><subject>Gates</subject><subject>Geometry</subject><subject>Information processing</subject><subject>Ions</subject><subject>Physics</subject><subject>Quantum computation</subject><subject>Quantum information</subject><subject>Quantum theory</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqF0kGL1DAUB_AiijuunrxLXFAQ7Zo0bZIeh2HVhUVBV_QWMulLJ0vbdJIUd7-9WWZwZmRE3iEQfvmHvLwse07wOcFUvB9UnDxgUtbFg2xGSs7ykgn-MJthXIgcC8pOsich3GCMK8LLx9kJKRjDnItZ9vPidgRvexii6lADvRtC9CpaNyBnkELeLacQ36GVbVe5sQ10Nt6hFlwP0VuN4i-HEs7X09JGNK5UANSqCE-zR0Z1AZ5t19Ps-4eL68Wn_OrLx8vF_CrXjNYxJ8umYI0QlAOjgLVuuME0VVMow4zihglaMWU4oxSD0AqqWtC6rjFwQwg9zV5vckfv1hOEKHsbNHSdGsBNQXJKKCcp8X-wEKIoaEUTPPsL3rjJD-kRssBlVeKqLBPKN6hVHUg7GJe6plsYwKvODWBs2p4TwRkjTBS70AOvR7uW--j8CEqV_sXqo6lvDg4kE-E2tmoKQV5--3po3_7bzq9_LD4f1dq7EDwYOaYpUf5OEizvx07ujV3SL7Ytm5Y9NDu7nbMEXm2BClp1xqtB27BzJcOClPfu5cZt0v-A_ct-A44l6Ek</recordid><startdate>20030327</startdate><enddate>20030327</enddate><creator>Wineland, D. J</creator><creator>Leibfried, D</creator><creator>DeMarco, B</creator><creator>Meyer, V</creator><creator>Lucas, D</creator><creator>Barrett, M</creator><creator>Britton, J</creator><creator>Itano, W. M</creator><creator>Jelenkovi, B</creator><creator>Langer, C</creator><creator>Rosenband, T</creator><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20030327</creationdate><title>Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate</title><author>Wineland, D. J ; Leibfried, D ; DeMarco, B ; Meyer, V ; Lucas, D ; Barrett, M ; Britton, J ; Itano, W. M ; Jelenkovi, B ; Langer, C ; Rosenband, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c639t-1bd26d8837e63e0ccd7f03030d2af6fa7f68356af76330e8cae59839990e7f113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Beryllium</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Exact sciences and technology</topic><topic>Gates</topic><topic>Geometry</topic><topic>Information processing</topic><topic>Ions</topic><topic>Physics</topic><topic>Quantum computation</topic><topic>Quantum information</topic><topic>Quantum theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wineland, D. J</creatorcontrib><creatorcontrib>Leibfried, D</creatorcontrib><creatorcontrib>DeMarco, B</creatorcontrib><creatorcontrib>Meyer, V</creatorcontrib><creatorcontrib>Lucas, D</creatorcontrib><creatorcontrib>Barrett, M</creatorcontrib><creatorcontrib>Britton, J</creatorcontrib><creatorcontrib>Itano, W. M</creatorcontrib><creatorcontrib>Jelenkovi, B</creatorcontrib><creatorcontrib>Langer, C</creatorcontrib><creatorcontrib>Rosenband, T</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database (ProQuest)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wineland, D. J</au><au>Leibfried, D</au><au>DeMarco, B</au><au>Meyer, V</au><au>Lucas, D</au><au>Barrett, M</au><au>Britton, J</au><au>Itano, W. M</au><au>Jelenkovi, B</au><au>Langer, C</au><au>Rosenband, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate</atitle><jtitle>Nature (London)</jtitle><addtitle>Nature</addtitle><date>2003-03-27</date><risdate>2003</risdate><volume>422</volume><issue>6930</issue><spage>412</spage><epage>415</epage><pages>412-415</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Universal logic gates for two quantum bits (qubits) form an essential ingredient of quantum computation. Dynamical gates have been proposed in the context of trapped ions; however, geometric phase gates (which change only the phase of the physical qubits) offer potential practical advantages because they have higher intrinsic resistance to certain small errors and might enable faster gate implementation. Here we demonstrate a universal geometric π-phase gate between two beryllium ion-qubits, based on coherent displacements induced by an optical dipole force. The displacements depend on the internal atomic states; the motional state of the ions is unimportant provided that they remain in the regime in which the force can be considered constant over the extent of each ion's wave packet. By combining the gate with single-qubit rotations, we have prepared ions in an entangled Bell state with 97% fidelity-about six times better than in a previous experiment demonstrating a universal gate between two ion-qubits. The particular properties of the gate make it attractive for a multiplexed trap architecture that would enable scaling to large numbers of ion-qubits.</abstract><cop>London</cop><pub>Nature Publishing</pub><pmid>12660778</pmid><doi>10.1038/nature01492</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2003-03, Vol.422 (6930), p.412-415
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_73137130
source Nature
subjects Beryllium
Classical and quantum physics: mechanics and fields
Exact sciences and technology
Gates
Geometry
Information processing
Ions
Physics
Quantum computation
Quantum information
Quantum theory
title Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20demonstration%20of%20a%20robust,%20high-fidelity%20geometric%20two%20ion-qubit%20phase%20gate&rft.jtitle=Nature%20(London)&rft.au=Wineland,%20D.%20J&rft.date=2003-03-27&rft.volume=422&rft.issue=6930&rft.spage=412&rft.epage=415&rft.pages=412-415&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature01492&rft_dat=%3Cgale_proqu%3EA187661682%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c639t-1bd26d8837e63e0ccd7f03030d2af6fa7f68356af76330e8cae59839990e7f113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204540544&rft_id=info:pmid/12660778&rft_galeid=A187661682&rfr_iscdi=true