Loading…

Characterization of mutations in severe methylenetetrahydrofolate reductase deficiency reveals an FAD-responsive mutation

Methylenetetrahydrofolate reductase (MTHFR) synthesizes 5‐methyltetrahydrofolate, a major methyl donor for homocysteine remethylation to methionine. Severe MTHFR deficiency results in marked hyperhomocysteinemia and homocystinuria. Patients display developmental delay and a variety of neurological a...

Full description

Saved in:
Bibliographic Details
Published in:Human mutation 2003-05, Vol.21 (5), p.509-520
Main Authors: Sibani, Sahar, Leclerc, Daniel, Weisberg, Ilan S., O'Ferrall, Erin, Watkins, David, Artigas, Carmen, Rosenblatt, David S., Rozen, Rima
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Methylenetetrahydrofolate reductase (MTHFR) synthesizes 5‐methyltetrahydrofolate, a major methyl donor for homocysteine remethylation to methionine. Severe MTHFR deficiency results in marked hyperhomocysteinemia and homocystinuria. Patients display developmental delay and a variety of neurological and vascular symptoms. Cloning of the human cDNA and gene has enabled the identification of 29 rare mutations in homocystinuric patients and two common variants [677C>T (A222V) and 1298A>C (E429A)] with mild enzymatic deficiency. Homozygosity for 677C>T or combined heterozygosity for both polymorphisms is associated with mild hyperhomocysteinemia. In this communication, we describe four novel mutations in patients with homocystinuria: two missense mutations (471C>G, I153M; 1025T>C, M338T), a nonsense mutation (1274G>A, W421X), and a 2‐bp deletion (1553delAG). We expressed the 1025T>C mutation as well as two previously reported amino acid substitutions [983A>G (N324S) and 1027T>G (W339G)] and observed decreased enzyme activity at 10%, 36%, and 21% of control levels, respectively, with little or no effect on affinity for 5‐methyltetrahydrofolate. One of these mutations, 983A>G (N324S), showed flavin adenine dinucleotide (FAD) responsiveness in vitro. Expression of these mutations in cis with the 677C>T polymorphism, as observed in the patients, resulted in an additional 50% decrease in enzyme activity. This report brings the total to 33 severe mutations identified in patients with severe MTHFR deficiency. Hum Mutat 21:509–520, 2003. © 2003 Wiley‐Liss, Inc.
ISSN:1059-7794
1098-1004
DOI:10.1002/humu.10193