Loading…
Splice site mutations are a common cause of X-linked chronic granulomatous disease
Chronic granulomatous disease (CGD) is characterized by the absence of a respiratory burst in activated phagocytes. Defects in at least four different genes lead to CGD. Patients with the X-linked form of CGD have mutations in the gene for the beta-subunit of cytochrome b558 (gp91-phox). We studied...
Saved in:
Published in: | Blood 1992-09, Vol.80 (6), p.1553-1558 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Chronic granulomatous disease (CGD) is characterized by the absence of a respiratory burst in activated phagocytes. Defects in at least four different genes lead to CGD. Patients with the X-linked form of CGD have mutations in the gene for the beta-subunit of cytochrome b558 (gp91-phox). We studied the molecular defect in four patients with X-linked CGD. In a fifth family, we studied the mother of a patient with X-linked CGD who had died before our investigations. Gp91-phox messenger RNA (mRNA) was reverse transcribed into cDNA and the coding region was amplified by polymerase chain reaction into three fragments. Sequence analysis showed the absence of the exon 7, 5, 3, and 2 sequences in patients 1, 2, 3, and 4, respectively. In carrier 5, we found both normal cDNA and cDNA that lacked 57 3'-nucleotides of exon 6. We analyzed the splice sites of the flanking introns of the missing exons. In patients 1, 2, and 3, we found single nucleotide substitutions within the first five positions of the down-stream 5' donor splice sites. In patient 4, a similar substitution was found at position -1 of the 3' acceptor splice site of intron 1. In carrier 5, no mutation was found in the exon 6-intron 6 boundary sequence. Instead, a single substitution was observed in exon 6 (C---A at nucleotide 633) that created a new donor splice site. Apparently, mRNA splicing occurs preferentially at this newly created splice site. We conclude that the absence of the exon sequences in the gp91-phox mRNA of these patients is due to splicing errors. Of 30 European X-linked CGD patients studied by us so far, five appear to be caused by mutations that affect correct mRNA splicing. Thus, such mutations appear to be a common cause of X-linked CGD. |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood.V80.6.1553.1553 |