Loading…

Radiometric errors in complex Fourier transform spectrometry

A complex spectrum arises from the Fourier transform of an asymmetric interferogram. A rigorous derivation shows that the rms noise in the real part of that spectrum is indeed given by the commonly used relation sigmaR = 2X x NEP/(etaAomega square root(tauN)), where NEP is the delay-independent and...

Full description

Saved in:
Bibliographic Details
Published in:Applied optics (2004) 2003-04, Vol.42 (10), p.1779-1787
Main Author: Sromovsky, Lawrence A
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c287t-29827bd515950c1eb033263bf3c56e455ba05345d22a5a7da90fdf16c8f192a53
cites
container_end_page 1787
container_issue 10
container_start_page 1779
container_title Applied optics (2004)
container_volume 42
creator Sromovsky, Lawrence A
description A complex spectrum arises from the Fourier transform of an asymmetric interferogram. A rigorous derivation shows that the rms noise in the real part of that spectrum is indeed given by the commonly used relation sigmaR = 2X x NEP/(etaAomega square root(tauN)), where NEP is the delay-independent and uncorrelated detector noise-equivalent power per unit bandwidth, +/- X is the delay range measured with N samples averaging for a time tau per sample, eta is the system optical efficiency, and Aomega is the system throughput. A real spectrum produced by complex calibration with two complex reference spectra [Appl. Opt. 27, 3210 (1988)] has a variance sigmaL2 = sigmaR2 + sigma(c)2 (Lh - Ls)2/(Lh - Lc)2 + sigma(h)2 (Ls - Lc)2/(Lh - Lc)2, valid for sigmaR, sigma(c), and sigma(h) small compared with Lh - Lc, where Ls, Lh, and Lc are scene, hot reference, and cold reference spectra, respectively, and sigma(c) and sigma(h) are the respective combined uncertainties in knowledge and measurement of the hot and cold reference spectra.
doi_str_mv 10.1364/AO.42.001779
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_73186075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73186075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-29827bd515950c1eb033263bf3c56e455ba05345d22a5a7da90fdf16c8f192a53</originalsourceid><addsrcrecordid>eNo1j0tLxDAYRbNQnHF051qycteaR788wM0wOCoMDIiCu5KmCUTapiYtOP_e17i6cDnnwkXoipKSclHdrvdlxUpCqJT6BC0pgC4oU28LdJ7zOyEcKi3P0IIyobgEsUR3z6YNsXdTCha7lGLKOAzYxn7s3CfexjkFl_CUzJB9TD3Oo7NT-jUOF-jUmy67y2Ou0Ov2_mXzWOz2D0-b9a6wTMmpYFox2bRAQQOx1DWEcyZ447kF4SqAxhDgFbSMGTCyNZr41lNhlaf6u-IrdPO3O6b4Mbs81X3I1nWdGVyccy05VYLIH_D6CM5N79p6TKE36VD__-VfbyNU7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73186075</pqid></control><display><type>article</type><title>Radiometric errors in complex Fourier transform spectrometry</title><source>Optica Publishing Group Journals</source><creator>Sromovsky, Lawrence A</creator><creatorcontrib>Sromovsky, Lawrence A</creatorcontrib><description>A complex spectrum arises from the Fourier transform of an asymmetric interferogram. A rigorous derivation shows that the rms noise in the real part of that spectrum is indeed given by the commonly used relation sigmaR = 2X x NEP/(etaAomega square root(tauN)), where NEP is the delay-independent and uncorrelated detector noise-equivalent power per unit bandwidth, +/- X is the delay range measured with N samples averaging for a time tau per sample, eta is the system optical efficiency, and Aomega is the system throughput. A real spectrum produced by complex calibration with two complex reference spectra [Appl. Opt. 27, 3210 (1988)] has a variance sigmaL2 = sigmaR2 + sigma(c)2 (Lh - Ls)2/(Lh - Lc)2 + sigma(h)2 (Ls - Lc)2/(Lh - Lc)2, valid for sigmaR, sigma(c), and sigma(h) small compared with Lh - Lc, where Ls, Lh, and Lc are scene, hot reference, and cold reference spectra, respectively, and sigma(c) and sigma(h) are the respective combined uncertainties in knowledge and measurement of the hot and cold reference spectra.</description><identifier>ISSN: 1559-128X</identifier><identifier>DOI: 10.1364/AO.42.001779</identifier><identifier>PMID: 12683756</identifier><language>eng</language><publisher>United States</publisher><ispartof>Applied optics (2004), 2003-04, Vol.42 (10), p.1779-1787</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-29827bd515950c1eb033263bf3c56e455ba05345d22a5a7da90fdf16c8f192a53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12683756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sromovsky, Lawrence A</creatorcontrib><title>Radiometric errors in complex Fourier transform spectrometry</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>A complex spectrum arises from the Fourier transform of an asymmetric interferogram. A rigorous derivation shows that the rms noise in the real part of that spectrum is indeed given by the commonly used relation sigmaR = 2X x NEP/(etaAomega square root(tauN)), where NEP is the delay-independent and uncorrelated detector noise-equivalent power per unit bandwidth, +/- X is the delay range measured with N samples averaging for a time tau per sample, eta is the system optical efficiency, and Aomega is the system throughput. A real spectrum produced by complex calibration with two complex reference spectra [Appl. Opt. 27, 3210 (1988)] has a variance sigmaL2 = sigmaR2 + sigma(c)2 (Lh - Ls)2/(Lh - Lc)2 + sigma(h)2 (Ls - Lc)2/(Lh - Lc)2, valid for sigmaR, sigma(c), and sigma(h) small compared with Lh - Lc, where Ls, Lh, and Lc are scene, hot reference, and cold reference spectra, respectively, and sigma(c) and sigma(h) are the respective combined uncertainties in knowledge and measurement of the hot and cold reference spectra.</description><issn>1559-128X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNo1j0tLxDAYRbNQnHF051qycteaR788wM0wOCoMDIiCu5KmCUTapiYtOP_e17i6cDnnwkXoipKSclHdrvdlxUpCqJT6BC0pgC4oU28LdJ7zOyEcKi3P0IIyobgEsUR3z6YNsXdTCha7lGLKOAzYxn7s3CfexjkFl_CUzJB9TD3Oo7NT-jUOF-jUmy67y2Ou0Ov2_mXzWOz2D0-b9a6wTMmpYFox2bRAQQOx1DWEcyZ447kF4SqAxhDgFbSMGTCyNZr41lNhlaf6u-IrdPO3O6b4Mbs81X3I1nWdGVyccy05VYLIH_D6CM5N79p6TKE36VD__-VfbyNU7g</recordid><startdate>20030401</startdate><enddate>20030401</enddate><creator>Sromovsky, Lawrence A</creator><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20030401</creationdate><title>Radiometric errors in complex Fourier transform spectrometry</title><author>Sromovsky, Lawrence A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-29827bd515950c1eb033263bf3c56e455ba05345d22a5a7da90fdf16c8f192a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sromovsky, Lawrence A</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sromovsky, Lawrence A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiometric errors in complex Fourier transform spectrometry</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2003-04-01</date><risdate>2003</risdate><volume>42</volume><issue>10</issue><spage>1779</spage><epage>1787</epage><pages>1779-1787</pages><issn>1559-128X</issn><abstract>A complex spectrum arises from the Fourier transform of an asymmetric interferogram. A rigorous derivation shows that the rms noise in the real part of that spectrum is indeed given by the commonly used relation sigmaR = 2X x NEP/(etaAomega square root(tauN)), where NEP is the delay-independent and uncorrelated detector noise-equivalent power per unit bandwidth, +/- X is the delay range measured with N samples averaging for a time tau per sample, eta is the system optical efficiency, and Aomega is the system throughput. A real spectrum produced by complex calibration with two complex reference spectra [Appl. Opt. 27, 3210 (1988)] has a variance sigmaL2 = sigmaR2 + sigma(c)2 (Lh - Ls)2/(Lh - Lc)2 + sigma(h)2 (Ls - Lc)2/(Lh - Lc)2, valid for sigmaR, sigma(c), and sigma(h) small compared with Lh - Lc, where Ls, Lh, and Lc are scene, hot reference, and cold reference spectra, respectively, and sigma(c) and sigma(h) are the respective combined uncertainties in knowledge and measurement of the hot and cold reference spectra.</abstract><cop>United States</cop><pmid>12683756</pmid><doi>10.1364/AO.42.001779</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1559-128X
ispartof Applied optics (2004), 2003-04, Vol.42 (10), p.1779-1787
issn 1559-128X
language eng
recordid cdi_proquest_miscellaneous_73186075
source Optica Publishing Group Journals
title Radiometric errors in complex Fourier transform spectrometry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A29%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiometric%20errors%20in%20complex%20Fourier%20transform%20spectrometry&rft.jtitle=Applied%20optics%20(2004)&rft.au=Sromovsky,%20Lawrence%20A&rft.date=2003-04-01&rft.volume=42&rft.issue=10&rft.spage=1779&rft.epage=1787&rft.pages=1779-1787&rft.issn=1559-128X&rft_id=info:doi/10.1364/AO.42.001779&rft_dat=%3Cproquest_pubme%3E73186075%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-29827bd515950c1eb033263bf3c56e455ba05345d22a5a7da90fdf16c8f192a53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=73186075&rft_id=info:pmid/12683756&rfr_iscdi=true