Loading…
Surface modification of TiO2 by a ruthenium(II) polypyridyl complex via silyl-linkage for the sensitized photocatalytic degradation of carbon tetrachloride by visible irradiation
A new ruthenium(II) photosensitizer, [Ru(II)(py-pzH)(3)](2+) (where py-pzH=3-(2'-pyridyl)pyrazole), has been synthesized. The complex displayed outstanding excited state redox properties (estimated Ru(III)/Ru(II)* approximately -1.24 V vs. NHE) and was expected to sensitize the injection of ele...
Saved in:
Published in: | Water research (Oxford) 2003-04, Vol.37 (8), p.1939-1947 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new ruthenium(II) photosensitizer, [Ru(II)(py-pzH)(3)](2+) (where py-pzH=3-(2'-pyridyl)pyrazole), has been synthesized. The complex displayed outstanding excited state redox properties (estimated Ru(III)/Ru(II)* approximately -1.24 V vs. NHE) and was expected to sensitize the injection of electrons into the conduction band of anatase TiO(2) upon visible irradiation. The photosensitizer was anchored onto the surface of anatase TiO(2) particles via in situ silylation. The silyl-linkage displayed excellent stability in both aqueous media, over a wide pH range, and in common organic solvents. The resultant material, TiO(2)-[Ru(II)(py-pz-Si identical with )(3)], was found to be able to mediate degradation of CCl(4) in neutral aqueous medium under broad band visible irradiation (lambda>450 nm). The relation between the rate of degradation and concentration of substrate was explored and the mechanism of the photodegradation of the perhalogenated organic was discussed. |
---|---|
ISSN: | 0043-1354 1879-2448 |
DOI: | 10.1016/S0043-1354(02)00567-5 |