Loading…
Iterative Chain Elongation by a Pikromycin Monomodular Polyketide Synthase
The unique ability of the pikromycin polyketide synthase (Pik PKS) to generate 12- and 14-membered ring macrolactones presents an opportunity to explore the fundamental processes of polyketide synthesis, specifically, the mechanistic details of the chain extension process. We have overexpressed and...
Saved in:
Published in: | Journal of the American Chemical Society 2003-04, Vol.125 (16), p.4682-4683 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The unique ability of the pikromycin polyketide synthase (Pik PKS) to generate 12- and 14-membered ring macrolactones presents an opportunity to explore the fundamental processes of polyketide synthesis, specifically, the mechanistic details of the chain extension process. We have overexpressed and purified PikAIII and PikAIV and demonstrated the ability of these proteins to generate triketide lactone products using 14C-methylmalonyl-CoA as the sole substrate. Monomodular PikAIII generates TKL (1) when reacted alone, and synthesizes TKL (2) upon reaction in combination with PikAIV. Product formation remains dependent on the enzymatic decarboxylation of methylmalonyl-CoA and transfer of the acyl chain within the enzyme rather than acylation by propionyl-CoA from spontaneous decarboxylation. We propose that synthesis of TKL (1) by PikAIII involves iterative assembly of the triketide chain within a PikAIII homodimer analogous to the nonmodular type I PKS systems. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja029974c |