Loading…
Critical role for PI 3-kinase in the control of erythropoietin-induced erythroid progenitor proliferation
The production of red blood cells is tightly regulated by erythropoietin (Epo). The phosphoinositide 3–kinase (PI 3-kinase) pathway was previously shown to be activated in response to Epo. We studied the role of this pathway in the control of Epo-induced survival and proliferation of primary human e...
Saved in:
Published in: | Blood 2003-05, Vol.101 (9), p.3436-3443 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c492t-57dbcb7b6605dad696a0c5d299755a479d74bc2f3db065cc5cef766ad14989013 |
---|---|
cites | cdi_FETCH-LOGICAL-c492t-57dbcb7b6605dad696a0c5d299755a479d74bc2f3db065cc5cef766ad14989013 |
container_end_page | 3443 |
container_issue | 9 |
container_start_page | 3436 |
container_title | Blood |
container_volume | 101 |
creator | Bouscary, Didier Pene, Frédéric Claessens, Yann-Erick Muller, Odile Chrétien, Stany Fontenay-Roupie, Michaëla Gisselbrecht, Sylvie Mayeux, Patrick Lacombe, Catherine |
description | The production of red blood cells is tightly regulated by erythropoietin (Epo). The phosphoinositide 3–kinase (PI 3-kinase) pathway was previously shown to be activated in response to Epo. We studied the role of this pathway in the control of Epo-induced survival and proliferation of primary human erythroid progenitors. We show that phosphoinositide 3 (PI 3)–kinase associates with 4 tyrosine-phosphorylated proteins in primary human erythroid progenitors, namely insulin receptor substrate–2 (IRS2), Src homology 2 domain–containing inositol 5′-phosphatase (SHIP), Grb2-associated binder–1 (Gab1), and the Epo receptor (EpoR). Using different in vitro systems, we demonstrate that 3 alternative pathways independently lead to Epo-induced activation of PI 3-kinase and phosphorylation of its downstream effectors, Akt, FKHRL1, and P70S6 kinase: through direct association of PI 3-kinase with the last tyrosine residue (Tyr479) of the Epo receptor (EpoR), through recruitment and phosphorylation of Gab proteins via either Tyr343 or Tyr401 of the EpoR, or through phosphorylation of IRS2 adaptor protein. The mitogen-activated protein (MAP) kinase pathway was also activated by Epo in erythroid progenitors, but we found that this process is independent of PI 3-kinase activation. In erythroid progenitors, the functional role of PI 3-kinase was both to prevent apoptosis and to stimulate cell proliferation in response to Epo stimulation. Finally, our results show that PI 3-kinase–mediated proliferation of erythroid progenitors in response to Epo occurs mainly through modulation of the E3 ligase SCFSKP2, which, in turn, down-regulates p27Kip1 cyclin-dependent kinase (CDK) inhibitor via proteasome degradation. |
doi_str_mv | 10.1182/blood-2002-07-2332 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73205544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006497120507210</els_id><sourcerecordid>73205544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-57dbcb7b6605dad696a0c5d299755a479d74bc2f3db065cc5cef766ad14989013</originalsourceid><addsrcrecordid>eNp9kMGOFCEQhonRuLOrL-DBcNEbWtBN0514MRN1N9lED3omNFS7pT0wAmOyby_jjNmbp6oUX_1FPsZeSHgj5ajezmtKQSgAJcAI1XXqEdtIrUbRRvCYbQBgEP1k5AW7LOUHgOw7pZ-yC6k0DCDlhtE2UyXvVp7TinxJmX-54Z34SdEV5BR5vUPuU6ztnaeFY76vdzntE2GlKCiGg8fwb0yB73P6jpFqS2rtSgtmVynFZ-zJ4taCz8_1in37-OHr9lrcfv50s31_K3w_qSq0CbOfzTwMoIMLwzQ48DqoaTJau95MwfSzV0sXZhi099rjYobBBdlP4wSyu2KvT7nt-q8Dlmp3VDyuq4uYDsWaToHWfd9AdQJ9TqVkXOw-087leyvBHgXbv4LtUbAFY4-C29LLc_ph3mF4WDkbbcCrM-BK07pkFz2VB643ehwn07h3Jw6bi9-E2RZPGJtLyuirDYn-948_pnGaiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73205544</pqid></control><display><type>article</type><title>Critical role for PI 3-kinase in the control of erythropoietin-induced erythroid progenitor proliferation</title><source>ScienceDirect Journals</source><creator>Bouscary, Didier ; Pene, Frédéric ; Claessens, Yann-Erick ; Muller, Odile ; Chrétien, Stany ; Fontenay-Roupie, Michaëla ; Gisselbrecht, Sylvie ; Mayeux, Patrick ; Lacombe, Catherine</creator><creatorcontrib>Bouscary, Didier ; Pene, Frédéric ; Claessens, Yann-Erick ; Muller, Odile ; Chrétien, Stany ; Fontenay-Roupie, Michaëla ; Gisselbrecht, Sylvie ; Mayeux, Patrick ; Lacombe, Catherine</creatorcontrib><description>The production of red blood cells is tightly regulated by erythropoietin (Epo). The phosphoinositide 3–kinase (PI 3-kinase) pathway was previously shown to be activated in response to Epo. We studied the role of this pathway in the control of Epo-induced survival and proliferation of primary human erythroid progenitors. We show that phosphoinositide 3 (PI 3)–kinase associates with 4 tyrosine-phosphorylated proteins in primary human erythroid progenitors, namely insulin receptor substrate–2 (IRS2), Src homology 2 domain–containing inositol 5′-phosphatase (SHIP), Grb2-associated binder–1 (Gab1), and the Epo receptor (EpoR). Using different in vitro systems, we demonstrate that 3 alternative pathways independently lead to Epo-induced activation of PI 3-kinase and phosphorylation of its downstream effectors, Akt, FKHRL1, and P70S6 kinase: through direct association of PI 3-kinase with the last tyrosine residue (Tyr479) of the Epo receptor (EpoR), through recruitment and phosphorylation of Gab proteins via either Tyr343 or Tyr401 of the EpoR, or through phosphorylation of IRS2 adaptor protein. The mitogen-activated protein (MAP) kinase pathway was also activated by Epo in erythroid progenitors, but we found that this process is independent of PI 3-kinase activation. In erythroid progenitors, the functional role of PI 3-kinase was both to prevent apoptosis and to stimulate cell proliferation in response to Epo stimulation. Finally, our results show that PI 3-kinase–mediated proliferation of erythroid progenitors in response to Epo occurs mainly through modulation of the E3 ligase SCFSKP2, which, in turn, down-regulates p27Kip1 cyclin-dependent kinase (CDK) inhibitor via proteasome degradation.</description><identifier>ISSN: 0006-4971</identifier><identifier>EISSN: 1528-0020</identifier><identifier>DOI: 10.1182/blood-2002-07-2332</identifier><identifier>PMID: 12506011</identifier><language>eng</language><publisher>Washington, DC: Elsevier Inc</publisher><subject>Adaptor Proteins, Signal Transducing ; Animals ; Apoptosis ; Biological and medical sciences ; Blood. Blood coagulation. Reticuloendothelial system ; Cell Cycle Proteins - metabolism ; Cell differentiation, maturation, development, hematopoiesis ; Cell Division ; Cell physiology ; Cell Survival ; Cells, Cultured - cytology ; Cells, Cultured - drug effects ; Cells, Cultured - enzymology ; Chromones - pharmacology ; Cyclin-Dependent Kinase Inhibitor p27 ; Cysteine Endopeptidases - metabolism ; DNA-Binding Proteins - metabolism ; Enzyme Activation - drug effects ; Enzyme Inhibitors - pharmacology ; Erythroid Precursor Cells - cytology ; Erythroid Precursor Cells - drug effects ; Erythroid Precursor Cells - enzymology ; Erythropoietin - pharmacology ; Erythropoietin - physiology ; Fetal Blood - cytology ; Forkhead Box Protein O1 ; Forkhead Box Protein O3 ; Forkhead Transcription Factors ; Fundamental and applied biological sciences. Psychology ; Humans ; Infant, Newborn ; Insulin Receptor Substrate Proteins ; Intracellular Signaling Peptides and Proteins ; Ligases - metabolism ; MAP Kinase Signaling System ; Medical sciences ; Mice ; Molecular and cellular biology ; Morpholines - pharmacology ; Multienzyme Complexes - metabolism ; Pharmacology. Drug treatments ; Phosphatidylinositol 3-Kinases - physiology ; Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases ; Phosphoinositide-3 Kinase Inhibitors ; Phosphoproteins - metabolism ; Phosphoric Monoester Hydrolases - metabolism ; Phosphorylation ; Proteasome Endopeptidase Complex ; Protein Processing, Post-Translational ; Protein-Serine-Threonine Kinases ; Proto-Oncogene Proteins - metabolism ; Proto-Oncogene Proteins c-akt ; Receptors, Erythropoietin - metabolism ; Ribosomal Protein S6 Kinases, 70-kDa - metabolism ; Signal Transduction - drug effects ; Sirolimus - pharmacology ; Transcription Factors - metabolism ; Tumor Suppressor Proteins - metabolism ; Ubiquitin-Protein Ligases</subject><ispartof>Blood, 2003-05, Vol.101 (9), p.3436-3443</ispartof><rights>2003 American Society of Hematology</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-57dbcb7b6605dad696a0c5d299755a479d74bc2f3db065cc5cef766ad14989013</citedby><cites>FETCH-LOGICAL-c492t-57dbcb7b6605dad696a0c5d299755a479d74bc2f3db065cc5cef766ad14989013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006497120507210$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14758897$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12506011$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bouscary, Didier</creatorcontrib><creatorcontrib>Pene, Frédéric</creatorcontrib><creatorcontrib>Claessens, Yann-Erick</creatorcontrib><creatorcontrib>Muller, Odile</creatorcontrib><creatorcontrib>Chrétien, Stany</creatorcontrib><creatorcontrib>Fontenay-Roupie, Michaëla</creatorcontrib><creatorcontrib>Gisselbrecht, Sylvie</creatorcontrib><creatorcontrib>Mayeux, Patrick</creatorcontrib><creatorcontrib>Lacombe, Catherine</creatorcontrib><title>Critical role for PI 3-kinase in the control of erythropoietin-induced erythroid progenitor proliferation</title><title>Blood</title><addtitle>Blood</addtitle><description>The production of red blood cells is tightly regulated by erythropoietin (Epo). The phosphoinositide 3–kinase (PI 3-kinase) pathway was previously shown to be activated in response to Epo. We studied the role of this pathway in the control of Epo-induced survival and proliferation of primary human erythroid progenitors. We show that phosphoinositide 3 (PI 3)–kinase associates with 4 tyrosine-phosphorylated proteins in primary human erythroid progenitors, namely insulin receptor substrate–2 (IRS2), Src homology 2 domain–containing inositol 5′-phosphatase (SHIP), Grb2-associated binder–1 (Gab1), and the Epo receptor (EpoR). Using different in vitro systems, we demonstrate that 3 alternative pathways independently lead to Epo-induced activation of PI 3-kinase and phosphorylation of its downstream effectors, Akt, FKHRL1, and P70S6 kinase: through direct association of PI 3-kinase with the last tyrosine residue (Tyr479) of the Epo receptor (EpoR), through recruitment and phosphorylation of Gab proteins via either Tyr343 or Tyr401 of the EpoR, or through phosphorylation of IRS2 adaptor protein. The mitogen-activated protein (MAP) kinase pathway was also activated by Epo in erythroid progenitors, but we found that this process is independent of PI 3-kinase activation. In erythroid progenitors, the functional role of PI 3-kinase was both to prevent apoptosis and to stimulate cell proliferation in response to Epo stimulation. Finally, our results show that PI 3-kinase–mediated proliferation of erythroid progenitors in response to Epo occurs mainly through modulation of the E3 ligase SCFSKP2, which, in turn, down-regulates p27Kip1 cyclin-dependent kinase (CDK) inhibitor via proteasome degradation.</description><subject>Adaptor Proteins, Signal Transducing</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Biological and medical sciences</subject><subject>Blood. Blood coagulation. Reticuloendothelial system</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell differentiation, maturation, development, hematopoiesis</subject><subject>Cell Division</subject><subject>Cell physiology</subject><subject>Cell Survival</subject><subject>Cells, Cultured - cytology</subject><subject>Cells, Cultured - drug effects</subject><subject>Cells, Cultured - enzymology</subject><subject>Chromones - pharmacology</subject><subject>Cyclin-Dependent Kinase Inhibitor p27</subject><subject>Cysteine Endopeptidases - metabolism</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Enzyme Activation - drug effects</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Erythroid Precursor Cells - cytology</subject><subject>Erythroid Precursor Cells - drug effects</subject><subject>Erythroid Precursor Cells - enzymology</subject><subject>Erythropoietin - pharmacology</subject><subject>Erythropoietin - physiology</subject><subject>Fetal Blood - cytology</subject><subject>Forkhead Box Protein O1</subject><subject>Forkhead Box Protein O3</subject><subject>Forkhead Transcription Factors</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Infant, Newborn</subject><subject>Insulin Receptor Substrate Proteins</subject><subject>Intracellular Signaling Peptides and Proteins</subject><subject>Ligases - metabolism</subject><subject>MAP Kinase Signaling System</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Molecular and cellular biology</subject><subject>Morpholines - pharmacology</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Pharmacology. Drug treatments</subject><subject>Phosphatidylinositol 3-Kinases - physiology</subject><subject>Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases</subject><subject>Phosphoinositide-3 Kinase Inhibitors</subject><subject>Phosphoproteins - metabolism</subject><subject>Phosphoric Monoester Hydrolases - metabolism</subject><subject>Phosphorylation</subject><subject>Proteasome Endopeptidase Complex</subject><subject>Protein Processing, Post-Translational</subject><subject>Protein-Serine-Threonine Kinases</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>Proto-Oncogene Proteins c-akt</subject><subject>Receptors, Erythropoietin - metabolism</subject><subject>Ribosomal Protein S6 Kinases, 70-kDa - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Sirolimus - pharmacology</subject><subject>Transcription Factors - metabolism</subject><subject>Tumor Suppressor Proteins - metabolism</subject><subject>Ubiquitin-Protein Ligases</subject><issn>0006-4971</issn><issn>1528-0020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp9kMGOFCEQhonRuLOrL-DBcNEbWtBN0514MRN1N9lED3omNFS7pT0wAmOyby_jjNmbp6oUX_1FPsZeSHgj5ajezmtKQSgAJcAI1XXqEdtIrUbRRvCYbQBgEP1k5AW7LOUHgOw7pZ-yC6k0DCDlhtE2UyXvVp7TinxJmX-54Z34SdEV5BR5vUPuU6ztnaeFY76vdzntE2GlKCiGg8fwb0yB73P6jpFqS2rtSgtmVynFZ-zJ4taCz8_1in37-OHr9lrcfv50s31_K3w_qSq0CbOfzTwMoIMLwzQ48DqoaTJau95MwfSzV0sXZhi099rjYobBBdlP4wSyu2KvT7nt-q8Dlmp3VDyuq4uYDsWaToHWfd9AdQJ9TqVkXOw-087leyvBHgXbv4LtUbAFY4-C29LLc_ph3mF4WDkbbcCrM-BK07pkFz2VB643ehwn07h3Jw6bi9-E2RZPGJtLyuirDYn-948_pnGaiw</recordid><startdate>20030501</startdate><enddate>20030501</enddate><creator>Bouscary, Didier</creator><creator>Pene, Frédéric</creator><creator>Claessens, Yann-Erick</creator><creator>Muller, Odile</creator><creator>Chrétien, Stany</creator><creator>Fontenay-Roupie, Michaëla</creator><creator>Gisselbrecht, Sylvie</creator><creator>Mayeux, Patrick</creator><creator>Lacombe, Catherine</creator><general>Elsevier Inc</general><general>The Americain Society of Hematology</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030501</creationdate><title>Critical role for PI 3-kinase in the control of erythropoietin-induced erythroid progenitor proliferation</title><author>Bouscary, Didier ; Pene, Frédéric ; Claessens, Yann-Erick ; Muller, Odile ; Chrétien, Stany ; Fontenay-Roupie, Michaëla ; Gisselbrecht, Sylvie ; Mayeux, Patrick ; Lacombe, Catherine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-57dbcb7b6605dad696a0c5d299755a479d74bc2f3db065cc5cef766ad14989013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Adaptor Proteins, Signal Transducing</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Biological and medical sciences</topic><topic>Blood. Blood coagulation. Reticuloendothelial system</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell differentiation, maturation, development, hematopoiesis</topic><topic>Cell Division</topic><topic>Cell physiology</topic><topic>Cell Survival</topic><topic>Cells, Cultured - cytology</topic><topic>Cells, Cultured - drug effects</topic><topic>Cells, Cultured - enzymology</topic><topic>Chromones - pharmacology</topic><topic>Cyclin-Dependent Kinase Inhibitor p27</topic><topic>Cysteine Endopeptidases - metabolism</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Enzyme Activation - drug effects</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Erythroid Precursor Cells - cytology</topic><topic>Erythroid Precursor Cells - drug effects</topic><topic>Erythroid Precursor Cells - enzymology</topic><topic>Erythropoietin - pharmacology</topic><topic>Erythropoietin - physiology</topic><topic>Fetal Blood - cytology</topic><topic>Forkhead Box Protein O1</topic><topic>Forkhead Box Protein O3</topic><topic>Forkhead Transcription Factors</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Infant, Newborn</topic><topic>Insulin Receptor Substrate Proteins</topic><topic>Intracellular Signaling Peptides and Proteins</topic><topic>Ligases - metabolism</topic><topic>MAP Kinase Signaling System</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Molecular and cellular biology</topic><topic>Morpholines - pharmacology</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Pharmacology. Drug treatments</topic><topic>Phosphatidylinositol 3-Kinases - physiology</topic><topic>Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases</topic><topic>Phosphoinositide-3 Kinase Inhibitors</topic><topic>Phosphoproteins - metabolism</topic><topic>Phosphoric Monoester Hydrolases - metabolism</topic><topic>Phosphorylation</topic><topic>Proteasome Endopeptidase Complex</topic><topic>Protein Processing, Post-Translational</topic><topic>Protein-Serine-Threonine Kinases</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>Proto-Oncogene Proteins c-akt</topic><topic>Receptors, Erythropoietin - metabolism</topic><topic>Ribosomal Protein S6 Kinases, 70-kDa - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Sirolimus - pharmacology</topic><topic>Transcription Factors - metabolism</topic><topic>Tumor Suppressor Proteins - metabolism</topic><topic>Ubiquitin-Protein Ligases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouscary, Didier</creatorcontrib><creatorcontrib>Pene, Frédéric</creatorcontrib><creatorcontrib>Claessens, Yann-Erick</creatorcontrib><creatorcontrib>Muller, Odile</creatorcontrib><creatorcontrib>Chrétien, Stany</creatorcontrib><creatorcontrib>Fontenay-Roupie, Michaëla</creatorcontrib><creatorcontrib>Gisselbrecht, Sylvie</creatorcontrib><creatorcontrib>Mayeux, Patrick</creatorcontrib><creatorcontrib>Lacombe, Catherine</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Blood</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouscary, Didier</au><au>Pene, Frédéric</au><au>Claessens, Yann-Erick</au><au>Muller, Odile</au><au>Chrétien, Stany</au><au>Fontenay-Roupie, Michaëla</au><au>Gisselbrecht, Sylvie</au><au>Mayeux, Patrick</au><au>Lacombe, Catherine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical role for PI 3-kinase in the control of erythropoietin-induced erythroid progenitor proliferation</atitle><jtitle>Blood</jtitle><addtitle>Blood</addtitle><date>2003-05-01</date><risdate>2003</risdate><volume>101</volume><issue>9</issue><spage>3436</spage><epage>3443</epage><pages>3436-3443</pages><issn>0006-4971</issn><eissn>1528-0020</eissn><abstract>The production of red blood cells is tightly regulated by erythropoietin (Epo). The phosphoinositide 3–kinase (PI 3-kinase) pathway was previously shown to be activated in response to Epo. We studied the role of this pathway in the control of Epo-induced survival and proliferation of primary human erythroid progenitors. We show that phosphoinositide 3 (PI 3)–kinase associates with 4 tyrosine-phosphorylated proteins in primary human erythroid progenitors, namely insulin receptor substrate–2 (IRS2), Src homology 2 domain–containing inositol 5′-phosphatase (SHIP), Grb2-associated binder–1 (Gab1), and the Epo receptor (EpoR). Using different in vitro systems, we demonstrate that 3 alternative pathways independently lead to Epo-induced activation of PI 3-kinase and phosphorylation of its downstream effectors, Akt, FKHRL1, and P70S6 kinase: through direct association of PI 3-kinase with the last tyrosine residue (Tyr479) of the Epo receptor (EpoR), through recruitment and phosphorylation of Gab proteins via either Tyr343 or Tyr401 of the EpoR, or through phosphorylation of IRS2 adaptor protein. The mitogen-activated protein (MAP) kinase pathway was also activated by Epo in erythroid progenitors, but we found that this process is independent of PI 3-kinase activation. In erythroid progenitors, the functional role of PI 3-kinase was both to prevent apoptosis and to stimulate cell proliferation in response to Epo stimulation. Finally, our results show that PI 3-kinase–mediated proliferation of erythroid progenitors in response to Epo occurs mainly through modulation of the E3 ligase SCFSKP2, which, in turn, down-regulates p27Kip1 cyclin-dependent kinase (CDK) inhibitor via proteasome degradation.</abstract><cop>Washington, DC</cop><pub>Elsevier Inc</pub><pmid>12506011</pmid><doi>10.1182/blood-2002-07-2332</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-4971 |
ispartof | Blood, 2003-05, Vol.101 (9), p.3436-3443 |
issn | 0006-4971 1528-0020 |
language | eng |
recordid | cdi_proquest_miscellaneous_73205544 |
source | ScienceDirect Journals |
subjects | Adaptor Proteins, Signal Transducing Animals Apoptosis Biological and medical sciences Blood. Blood coagulation. Reticuloendothelial system Cell Cycle Proteins - metabolism Cell differentiation, maturation, development, hematopoiesis Cell Division Cell physiology Cell Survival Cells, Cultured - cytology Cells, Cultured - drug effects Cells, Cultured - enzymology Chromones - pharmacology Cyclin-Dependent Kinase Inhibitor p27 Cysteine Endopeptidases - metabolism DNA-Binding Proteins - metabolism Enzyme Activation - drug effects Enzyme Inhibitors - pharmacology Erythroid Precursor Cells - cytology Erythroid Precursor Cells - drug effects Erythroid Precursor Cells - enzymology Erythropoietin - pharmacology Erythropoietin - physiology Fetal Blood - cytology Forkhead Box Protein O1 Forkhead Box Protein O3 Forkhead Transcription Factors Fundamental and applied biological sciences. Psychology Humans Infant, Newborn Insulin Receptor Substrate Proteins Intracellular Signaling Peptides and Proteins Ligases - metabolism MAP Kinase Signaling System Medical sciences Mice Molecular and cellular biology Morpholines - pharmacology Multienzyme Complexes - metabolism Pharmacology. Drug treatments Phosphatidylinositol 3-Kinases - physiology Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases Phosphoinositide-3 Kinase Inhibitors Phosphoproteins - metabolism Phosphoric Monoester Hydrolases - metabolism Phosphorylation Proteasome Endopeptidase Complex Protein Processing, Post-Translational Protein-Serine-Threonine Kinases Proto-Oncogene Proteins - metabolism Proto-Oncogene Proteins c-akt Receptors, Erythropoietin - metabolism Ribosomal Protein S6 Kinases, 70-kDa - metabolism Signal Transduction - drug effects Sirolimus - pharmacology Transcription Factors - metabolism Tumor Suppressor Proteins - metabolism Ubiquitin-Protein Ligases |
title | Critical role for PI 3-kinase in the control of erythropoietin-induced erythroid progenitor proliferation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A06%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20role%20for%20PI%203-kinase%20in%20the%20control%20of%20erythropoietin-induced%20erythroid%20progenitor%20proliferation&rft.jtitle=Blood&rft.au=Bouscary,%20Didier&rft.date=2003-05-01&rft.volume=101&rft.issue=9&rft.spage=3436&rft.epage=3443&rft.pages=3436-3443&rft.issn=0006-4971&rft.eissn=1528-0020&rft_id=info:doi/10.1182/blood-2002-07-2332&rft_dat=%3Cproquest_cross%3E73205544%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c492t-57dbcb7b6605dad696a0c5d299755a479d74bc2f3db065cc5cef766ad14989013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=73205544&rft_id=info:pmid/12506011&rfr_iscdi=true |