Loading…

Critical role for PI 3-kinase in the control of erythropoietin-induced erythroid progenitor proliferation

The production of red blood cells is tightly regulated by erythropoietin (Epo). The phosphoinositide 3–kinase (PI 3-kinase) pathway was previously shown to be activated in response to Epo. We studied the role of this pathway in the control of Epo-induced survival and proliferation of primary human e...

Full description

Saved in:
Bibliographic Details
Published in:Blood 2003-05, Vol.101 (9), p.3436-3443
Main Authors: Bouscary, Didier, Pene, Frédéric, Claessens, Yann-Erick, Muller, Odile, Chrétien, Stany, Fontenay-Roupie, Michaëla, Gisselbrecht, Sylvie, Mayeux, Patrick, Lacombe, Catherine
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c492t-57dbcb7b6605dad696a0c5d299755a479d74bc2f3db065cc5cef766ad14989013
cites cdi_FETCH-LOGICAL-c492t-57dbcb7b6605dad696a0c5d299755a479d74bc2f3db065cc5cef766ad14989013
container_end_page 3443
container_issue 9
container_start_page 3436
container_title Blood
container_volume 101
creator Bouscary, Didier
Pene, Frédéric
Claessens, Yann-Erick
Muller, Odile
Chrétien, Stany
Fontenay-Roupie, Michaëla
Gisselbrecht, Sylvie
Mayeux, Patrick
Lacombe, Catherine
description The production of red blood cells is tightly regulated by erythropoietin (Epo). The phosphoinositide 3–kinase (PI 3-kinase) pathway was previously shown to be activated in response to Epo. We studied the role of this pathway in the control of Epo-induced survival and proliferation of primary human erythroid progenitors. We show that phosphoinositide 3 (PI 3)–kinase associates with 4 tyrosine-phosphorylated proteins in primary human erythroid progenitors, namely insulin receptor substrate–2 (IRS2), Src homology 2 domain–containing inositol 5′-phosphatase (SHIP), Grb2-associated binder–1 (Gab1), and the Epo receptor (EpoR). Using different in vitro systems, we demonstrate that 3 alternative pathways independently lead to Epo-induced activation of PI 3-kinase and phosphorylation of its downstream effectors, Akt, FKHRL1, and P70S6 kinase: through direct association of PI 3-kinase with the last tyrosine residue (Tyr479) of the Epo receptor (EpoR), through recruitment and phosphorylation of Gab proteins via either Tyr343 or Tyr401 of the EpoR, or through phosphorylation of IRS2 adaptor protein. The mitogen-activated protein (MAP) kinase pathway was also activated by Epo in erythroid progenitors, but we found that this process is independent of PI 3-kinase activation. In erythroid progenitors, the functional role of PI 3-kinase was both to prevent apoptosis and to stimulate cell proliferation in response to Epo stimulation. Finally, our results show that PI 3-kinase–mediated proliferation of erythroid progenitors in response to Epo occurs mainly through modulation of the E3 ligase SCFSKP2, which, in turn, down-regulates p27Kip1 cyclin-dependent kinase (CDK) inhibitor via proteasome degradation.
doi_str_mv 10.1182/blood-2002-07-2332
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73205544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006497120507210</els_id><sourcerecordid>73205544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-57dbcb7b6605dad696a0c5d299755a479d74bc2f3db065cc5cef766ad14989013</originalsourceid><addsrcrecordid>eNp9kMGOFCEQhonRuLOrL-DBcNEbWtBN0514MRN1N9lED3omNFS7pT0wAmOyby_jjNmbp6oUX_1FPsZeSHgj5ajezmtKQSgAJcAI1XXqEdtIrUbRRvCYbQBgEP1k5AW7LOUHgOw7pZ-yC6k0DCDlhtE2UyXvVp7TinxJmX-54Z34SdEV5BR5vUPuU6ztnaeFY76vdzntE2GlKCiGg8fwb0yB73P6jpFqS2rtSgtmVynFZ-zJ4taCz8_1in37-OHr9lrcfv50s31_K3w_qSq0CbOfzTwMoIMLwzQ48DqoaTJau95MwfSzV0sXZhi099rjYobBBdlP4wSyu2KvT7nt-q8Dlmp3VDyuq4uYDsWaToHWfd9AdQJ9TqVkXOw-087leyvBHgXbv4LtUbAFY4-C29LLc_ph3mF4WDkbbcCrM-BK07pkFz2VB643ehwn07h3Jw6bi9-E2RZPGJtLyuirDYn-948_pnGaiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73205544</pqid></control><display><type>article</type><title>Critical role for PI 3-kinase in the control of erythropoietin-induced erythroid progenitor proliferation</title><source>ScienceDirect Journals</source><creator>Bouscary, Didier ; Pene, Frédéric ; Claessens, Yann-Erick ; Muller, Odile ; Chrétien, Stany ; Fontenay-Roupie, Michaëla ; Gisselbrecht, Sylvie ; Mayeux, Patrick ; Lacombe, Catherine</creator><creatorcontrib>Bouscary, Didier ; Pene, Frédéric ; Claessens, Yann-Erick ; Muller, Odile ; Chrétien, Stany ; Fontenay-Roupie, Michaëla ; Gisselbrecht, Sylvie ; Mayeux, Patrick ; Lacombe, Catherine</creatorcontrib><description>The production of red blood cells is tightly regulated by erythropoietin (Epo). The phosphoinositide 3–kinase (PI 3-kinase) pathway was previously shown to be activated in response to Epo. We studied the role of this pathway in the control of Epo-induced survival and proliferation of primary human erythroid progenitors. We show that phosphoinositide 3 (PI 3)–kinase associates with 4 tyrosine-phosphorylated proteins in primary human erythroid progenitors, namely insulin receptor substrate–2 (IRS2), Src homology 2 domain–containing inositol 5′-phosphatase (SHIP), Grb2-associated binder–1 (Gab1), and the Epo receptor (EpoR). Using different in vitro systems, we demonstrate that 3 alternative pathways independently lead to Epo-induced activation of PI 3-kinase and phosphorylation of its downstream effectors, Akt, FKHRL1, and P70S6 kinase: through direct association of PI 3-kinase with the last tyrosine residue (Tyr479) of the Epo receptor (EpoR), through recruitment and phosphorylation of Gab proteins via either Tyr343 or Tyr401 of the EpoR, or through phosphorylation of IRS2 adaptor protein. The mitogen-activated protein (MAP) kinase pathway was also activated by Epo in erythroid progenitors, but we found that this process is independent of PI 3-kinase activation. In erythroid progenitors, the functional role of PI 3-kinase was both to prevent apoptosis and to stimulate cell proliferation in response to Epo stimulation. Finally, our results show that PI 3-kinase–mediated proliferation of erythroid progenitors in response to Epo occurs mainly through modulation of the E3 ligase SCFSKP2, which, in turn, down-regulates p27Kip1 cyclin-dependent kinase (CDK) inhibitor via proteasome degradation.</description><identifier>ISSN: 0006-4971</identifier><identifier>EISSN: 1528-0020</identifier><identifier>DOI: 10.1182/blood-2002-07-2332</identifier><identifier>PMID: 12506011</identifier><language>eng</language><publisher>Washington, DC: Elsevier Inc</publisher><subject>Adaptor Proteins, Signal Transducing ; Animals ; Apoptosis ; Biological and medical sciences ; Blood. Blood coagulation. Reticuloendothelial system ; Cell Cycle Proteins - metabolism ; Cell differentiation, maturation, development, hematopoiesis ; Cell Division ; Cell physiology ; Cell Survival ; Cells, Cultured - cytology ; Cells, Cultured - drug effects ; Cells, Cultured - enzymology ; Chromones - pharmacology ; Cyclin-Dependent Kinase Inhibitor p27 ; Cysteine Endopeptidases - metabolism ; DNA-Binding Proteins - metabolism ; Enzyme Activation - drug effects ; Enzyme Inhibitors - pharmacology ; Erythroid Precursor Cells - cytology ; Erythroid Precursor Cells - drug effects ; Erythroid Precursor Cells - enzymology ; Erythropoietin - pharmacology ; Erythropoietin - physiology ; Fetal Blood - cytology ; Forkhead Box Protein O1 ; Forkhead Box Protein O3 ; Forkhead Transcription Factors ; Fundamental and applied biological sciences. Psychology ; Humans ; Infant, Newborn ; Insulin Receptor Substrate Proteins ; Intracellular Signaling Peptides and Proteins ; Ligases - metabolism ; MAP Kinase Signaling System ; Medical sciences ; Mice ; Molecular and cellular biology ; Morpholines - pharmacology ; Multienzyme Complexes - metabolism ; Pharmacology. Drug treatments ; Phosphatidylinositol 3-Kinases - physiology ; Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases ; Phosphoinositide-3 Kinase Inhibitors ; Phosphoproteins - metabolism ; Phosphoric Monoester Hydrolases - metabolism ; Phosphorylation ; Proteasome Endopeptidase Complex ; Protein Processing, Post-Translational ; Protein-Serine-Threonine Kinases ; Proto-Oncogene Proteins - metabolism ; Proto-Oncogene Proteins c-akt ; Receptors, Erythropoietin - metabolism ; Ribosomal Protein S6 Kinases, 70-kDa - metabolism ; Signal Transduction - drug effects ; Sirolimus - pharmacology ; Transcription Factors - metabolism ; Tumor Suppressor Proteins - metabolism ; Ubiquitin-Protein Ligases</subject><ispartof>Blood, 2003-05, Vol.101 (9), p.3436-3443</ispartof><rights>2003 American Society of Hematology</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-57dbcb7b6605dad696a0c5d299755a479d74bc2f3db065cc5cef766ad14989013</citedby><cites>FETCH-LOGICAL-c492t-57dbcb7b6605dad696a0c5d299755a479d74bc2f3db065cc5cef766ad14989013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006497120507210$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14758897$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12506011$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bouscary, Didier</creatorcontrib><creatorcontrib>Pene, Frédéric</creatorcontrib><creatorcontrib>Claessens, Yann-Erick</creatorcontrib><creatorcontrib>Muller, Odile</creatorcontrib><creatorcontrib>Chrétien, Stany</creatorcontrib><creatorcontrib>Fontenay-Roupie, Michaëla</creatorcontrib><creatorcontrib>Gisselbrecht, Sylvie</creatorcontrib><creatorcontrib>Mayeux, Patrick</creatorcontrib><creatorcontrib>Lacombe, Catherine</creatorcontrib><title>Critical role for PI 3-kinase in the control of erythropoietin-induced erythroid progenitor proliferation</title><title>Blood</title><addtitle>Blood</addtitle><description>The production of red blood cells is tightly regulated by erythropoietin (Epo). The phosphoinositide 3–kinase (PI 3-kinase) pathway was previously shown to be activated in response to Epo. We studied the role of this pathway in the control of Epo-induced survival and proliferation of primary human erythroid progenitors. We show that phosphoinositide 3 (PI 3)–kinase associates with 4 tyrosine-phosphorylated proteins in primary human erythroid progenitors, namely insulin receptor substrate–2 (IRS2), Src homology 2 domain–containing inositol 5′-phosphatase (SHIP), Grb2-associated binder–1 (Gab1), and the Epo receptor (EpoR). Using different in vitro systems, we demonstrate that 3 alternative pathways independently lead to Epo-induced activation of PI 3-kinase and phosphorylation of its downstream effectors, Akt, FKHRL1, and P70S6 kinase: through direct association of PI 3-kinase with the last tyrosine residue (Tyr479) of the Epo receptor (EpoR), through recruitment and phosphorylation of Gab proteins via either Tyr343 or Tyr401 of the EpoR, or through phosphorylation of IRS2 adaptor protein. The mitogen-activated protein (MAP) kinase pathway was also activated by Epo in erythroid progenitors, but we found that this process is independent of PI 3-kinase activation. In erythroid progenitors, the functional role of PI 3-kinase was both to prevent apoptosis and to stimulate cell proliferation in response to Epo stimulation. Finally, our results show that PI 3-kinase–mediated proliferation of erythroid progenitors in response to Epo occurs mainly through modulation of the E3 ligase SCFSKP2, which, in turn, down-regulates p27Kip1 cyclin-dependent kinase (CDK) inhibitor via proteasome degradation.</description><subject>Adaptor Proteins, Signal Transducing</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Biological and medical sciences</subject><subject>Blood. Blood coagulation. Reticuloendothelial system</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell differentiation, maturation, development, hematopoiesis</subject><subject>Cell Division</subject><subject>Cell physiology</subject><subject>Cell Survival</subject><subject>Cells, Cultured - cytology</subject><subject>Cells, Cultured - drug effects</subject><subject>Cells, Cultured - enzymology</subject><subject>Chromones - pharmacology</subject><subject>Cyclin-Dependent Kinase Inhibitor p27</subject><subject>Cysteine Endopeptidases - metabolism</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Enzyme Activation - drug effects</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Erythroid Precursor Cells - cytology</subject><subject>Erythroid Precursor Cells - drug effects</subject><subject>Erythroid Precursor Cells - enzymology</subject><subject>Erythropoietin - pharmacology</subject><subject>Erythropoietin - physiology</subject><subject>Fetal Blood - cytology</subject><subject>Forkhead Box Protein O1</subject><subject>Forkhead Box Protein O3</subject><subject>Forkhead Transcription Factors</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Infant, Newborn</subject><subject>Insulin Receptor Substrate Proteins</subject><subject>Intracellular Signaling Peptides and Proteins</subject><subject>Ligases - metabolism</subject><subject>MAP Kinase Signaling System</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Molecular and cellular biology</subject><subject>Morpholines - pharmacology</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Pharmacology. Drug treatments</subject><subject>Phosphatidylinositol 3-Kinases - physiology</subject><subject>Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases</subject><subject>Phosphoinositide-3 Kinase Inhibitors</subject><subject>Phosphoproteins - metabolism</subject><subject>Phosphoric Monoester Hydrolases - metabolism</subject><subject>Phosphorylation</subject><subject>Proteasome Endopeptidase Complex</subject><subject>Protein Processing, Post-Translational</subject><subject>Protein-Serine-Threonine Kinases</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>Proto-Oncogene Proteins c-akt</subject><subject>Receptors, Erythropoietin - metabolism</subject><subject>Ribosomal Protein S6 Kinases, 70-kDa - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Sirolimus - pharmacology</subject><subject>Transcription Factors - metabolism</subject><subject>Tumor Suppressor Proteins - metabolism</subject><subject>Ubiquitin-Protein Ligases</subject><issn>0006-4971</issn><issn>1528-0020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp9kMGOFCEQhonRuLOrL-DBcNEbWtBN0514MRN1N9lED3omNFS7pT0wAmOyby_jjNmbp6oUX_1FPsZeSHgj5ajezmtKQSgAJcAI1XXqEdtIrUbRRvCYbQBgEP1k5AW7LOUHgOw7pZ-yC6k0DCDlhtE2UyXvVp7TinxJmX-54Z34SdEV5BR5vUPuU6ztnaeFY76vdzntE2GlKCiGg8fwb0yB73P6jpFqS2rtSgtmVynFZ-zJ4taCz8_1in37-OHr9lrcfv50s31_K3w_qSq0CbOfzTwMoIMLwzQ48DqoaTJau95MwfSzV0sXZhi099rjYobBBdlP4wSyu2KvT7nt-q8Dlmp3VDyuq4uYDsWaToHWfd9AdQJ9TqVkXOw-087leyvBHgXbv4LtUbAFY4-C29LLc_ph3mF4WDkbbcCrM-BK07pkFz2VB643ehwn07h3Jw6bi9-E2RZPGJtLyuirDYn-948_pnGaiw</recordid><startdate>20030501</startdate><enddate>20030501</enddate><creator>Bouscary, Didier</creator><creator>Pene, Frédéric</creator><creator>Claessens, Yann-Erick</creator><creator>Muller, Odile</creator><creator>Chrétien, Stany</creator><creator>Fontenay-Roupie, Michaëla</creator><creator>Gisselbrecht, Sylvie</creator><creator>Mayeux, Patrick</creator><creator>Lacombe, Catherine</creator><general>Elsevier Inc</general><general>The Americain Society of Hematology</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030501</creationdate><title>Critical role for PI 3-kinase in the control of erythropoietin-induced erythroid progenitor proliferation</title><author>Bouscary, Didier ; Pene, Frédéric ; Claessens, Yann-Erick ; Muller, Odile ; Chrétien, Stany ; Fontenay-Roupie, Michaëla ; Gisselbrecht, Sylvie ; Mayeux, Patrick ; Lacombe, Catherine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-57dbcb7b6605dad696a0c5d299755a479d74bc2f3db065cc5cef766ad14989013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Adaptor Proteins, Signal Transducing</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Biological and medical sciences</topic><topic>Blood. Blood coagulation. Reticuloendothelial system</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell differentiation, maturation, development, hematopoiesis</topic><topic>Cell Division</topic><topic>Cell physiology</topic><topic>Cell Survival</topic><topic>Cells, Cultured - cytology</topic><topic>Cells, Cultured - drug effects</topic><topic>Cells, Cultured - enzymology</topic><topic>Chromones - pharmacology</topic><topic>Cyclin-Dependent Kinase Inhibitor p27</topic><topic>Cysteine Endopeptidases - metabolism</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Enzyme Activation - drug effects</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Erythroid Precursor Cells - cytology</topic><topic>Erythroid Precursor Cells - drug effects</topic><topic>Erythroid Precursor Cells - enzymology</topic><topic>Erythropoietin - pharmacology</topic><topic>Erythropoietin - physiology</topic><topic>Fetal Blood - cytology</topic><topic>Forkhead Box Protein O1</topic><topic>Forkhead Box Protein O3</topic><topic>Forkhead Transcription Factors</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Infant, Newborn</topic><topic>Insulin Receptor Substrate Proteins</topic><topic>Intracellular Signaling Peptides and Proteins</topic><topic>Ligases - metabolism</topic><topic>MAP Kinase Signaling System</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Molecular and cellular biology</topic><topic>Morpholines - pharmacology</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Pharmacology. Drug treatments</topic><topic>Phosphatidylinositol 3-Kinases - physiology</topic><topic>Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases</topic><topic>Phosphoinositide-3 Kinase Inhibitors</topic><topic>Phosphoproteins - metabolism</topic><topic>Phosphoric Monoester Hydrolases - metabolism</topic><topic>Phosphorylation</topic><topic>Proteasome Endopeptidase Complex</topic><topic>Protein Processing, Post-Translational</topic><topic>Protein-Serine-Threonine Kinases</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>Proto-Oncogene Proteins c-akt</topic><topic>Receptors, Erythropoietin - metabolism</topic><topic>Ribosomal Protein S6 Kinases, 70-kDa - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Sirolimus - pharmacology</topic><topic>Transcription Factors - metabolism</topic><topic>Tumor Suppressor Proteins - metabolism</topic><topic>Ubiquitin-Protein Ligases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouscary, Didier</creatorcontrib><creatorcontrib>Pene, Frédéric</creatorcontrib><creatorcontrib>Claessens, Yann-Erick</creatorcontrib><creatorcontrib>Muller, Odile</creatorcontrib><creatorcontrib>Chrétien, Stany</creatorcontrib><creatorcontrib>Fontenay-Roupie, Michaëla</creatorcontrib><creatorcontrib>Gisselbrecht, Sylvie</creatorcontrib><creatorcontrib>Mayeux, Patrick</creatorcontrib><creatorcontrib>Lacombe, Catherine</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Blood</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouscary, Didier</au><au>Pene, Frédéric</au><au>Claessens, Yann-Erick</au><au>Muller, Odile</au><au>Chrétien, Stany</au><au>Fontenay-Roupie, Michaëla</au><au>Gisselbrecht, Sylvie</au><au>Mayeux, Patrick</au><au>Lacombe, Catherine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical role for PI 3-kinase in the control of erythropoietin-induced erythroid progenitor proliferation</atitle><jtitle>Blood</jtitle><addtitle>Blood</addtitle><date>2003-05-01</date><risdate>2003</risdate><volume>101</volume><issue>9</issue><spage>3436</spage><epage>3443</epage><pages>3436-3443</pages><issn>0006-4971</issn><eissn>1528-0020</eissn><abstract>The production of red blood cells is tightly regulated by erythropoietin (Epo). The phosphoinositide 3–kinase (PI 3-kinase) pathway was previously shown to be activated in response to Epo. We studied the role of this pathway in the control of Epo-induced survival and proliferation of primary human erythroid progenitors. We show that phosphoinositide 3 (PI 3)–kinase associates with 4 tyrosine-phosphorylated proteins in primary human erythroid progenitors, namely insulin receptor substrate–2 (IRS2), Src homology 2 domain–containing inositol 5′-phosphatase (SHIP), Grb2-associated binder–1 (Gab1), and the Epo receptor (EpoR). Using different in vitro systems, we demonstrate that 3 alternative pathways independently lead to Epo-induced activation of PI 3-kinase and phosphorylation of its downstream effectors, Akt, FKHRL1, and P70S6 kinase: through direct association of PI 3-kinase with the last tyrosine residue (Tyr479) of the Epo receptor (EpoR), through recruitment and phosphorylation of Gab proteins via either Tyr343 or Tyr401 of the EpoR, or through phosphorylation of IRS2 adaptor protein. The mitogen-activated protein (MAP) kinase pathway was also activated by Epo in erythroid progenitors, but we found that this process is independent of PI 3-kinase activation. In erythroid progenitors, the functional role of PI 3-kinase was both to prevent apoptosis and to stimulate cell proliferation in response to Epo stimulation. Finally, our results show that PI 3-kinase–mediated proliferation of erythroid progenitors in response to Epo occurs mainly through modulation of the E3 ligase SCFSKP2, which, in turn, down-regulates p27Kip1 cyclin-dependent kinase (CDK) inhibitor via proteasome degradation.</abstract><cop>Washington, DC</cop><pub>Elsevier Inc</pub><pmid>12506011</pmid><doi>10.1182/blood-2002-07-2332</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-4971
ispartof Blood, 2003-05, Vol.101 (9), p.3436-3443
issn 0006-4971
1528-0020
language eng
recordid cdi_proquest_miscellaneous_73205544
source ScienceDirect Journals
subjects Adaptor Proteins, Signal Transducing
Animals
Apoptosis
Biological and medical sciences
Blood. Blood coagulation. Reticuloendothelial system
Cell Cycle Proteins - metabolism
Cell differentiation, maturation, development, hematopoiesis
Cell Division
Cell physiology
Cell Survival
Cells, Cultured - cytology
Cells, Cultured - drug effects
Cells, Cultured - enzymology
Chromones - pharmacology
Cyclin-Dependent Kinase Inhibitor p27
Cysteine Endopeptidases - metabolism
DNA-Binding Proteins - metabolism
Enzyme Activation - drug effects
Enzyme Inhibitors - pharmacology
Erythroid Precursor Cells - cytology
Erythroid Precursor Cells - drug effects
Erythroid Precursor Cells - enzymology
Erythropoietin - pharmacology
Erythropoietin - physiology
Fetal Blood - cytology
Forkhead Box Protein O1
Forkhead Box Protein O3
Forkhead Transcription Factors
Fundamental and applied biological sciences. Psychology
Humans
Infant, Newborn
Insulin Receptor Substrate Proteins
Intracellular Signaling Peptides and Proteins
Ligases - metabolism
MAP Kinase Signaling System
Medical sciences
Mice
Molecular and cellular biology
Morpholines - pharmacology
Multienzyme Complexes - metabolism
Pharmacology. Drug treatments
Phosphatidylinositol 3-Kinases - physiology
Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
Phosphoinositide-3 Kinase Inhibitors
Phosphoproteins - metabolism
Phosphoric Monoester Hydrolases - metabolism
Phosphorylation
Proteasome Endopeptidase Complex
Protein Processing, Post-Translational
Protein-Serine-Threonine Kinases
Proto-Oncogene Proteins - metabolism
Proto-Oncogene Proteins c-akt
Receptors, Erythropoietin - metabolism
Ribosomal Protein S6 Kinases, 70-kDa - metabolism
Signal Transduction - drug effects
Sirolimus - pharmacology
Transcription Factors - metabolism
Tumor Suppressor Proteins - metabolism
Ubiquitin-Protein Ligases
title Critical role for PI 3-kinase in the control of erythropoietin-induced erythroid progenitor proliferation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A06%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20role%20for%20PI%203-kinase%20in%20the%20control%20of%20erythropoietin-induced%20erythroid%20progenitor%20proliferation&rft.jtitle=Blood&rft.au=Bouscary,%20Didier&rft.date=2003-05-01&rft.volume=101&rft.issue=9&rft.spage=3436&rft.epage=3443&rft.pages=3436-3443&rft.issn=0006-4971&rft.eissn=1528-0020&rft_id=info:doi/10.1182/blood-2002-07-2332&rft_dat=%3Cproquest_cross%3E73205544%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c492t-57dbcb7b6605dad696a0c5d299755a479d74bc2f3db065cc5cef766ad14989013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=73205544&rft_id=info:pmid/12506011&rfr_iscdi=true