Loading…
How we are shaped: The biomechanics of gastrulation
Although it is rarely considered so in modern developmental biology, morphogenesis is fundamentally a biomechanical process, and this is especially true of one of the first major morphogenic transformations in development, gastrulation. Cells bring about changes in embryonic form by generating patte...
Saved in:
Published in: | Differentiation (London) 2003-04, Vol.71 (3), p.171-205 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5261-b1915e363cc83a6734f8e09cfd65140883eb3cb3c63832d6c0d4de6eff09ea743 |
---|---|
cites | cdi_FETCH-LOGICAL-c5261-b1915e363cc83a6734f8e09cfd65140883eb3cb3c63832d6c0d4de6eff09ea743 |
container_end_page | 205 |
container_issue | 3 |
container_start_page | 171 |
container_title | Differentiation (London) |
container_volume | 71 |
creator | Keller, Ray Davidson, Lance A. Shook, David R. |
description | Although it is rarely considered so in modern developmental biology, morphogenesis is fundamentally a biomechanical process, and this is especially true of one of the first major morphogenic transformations in development, gastrulation. Cells bring about changes in embryonic form by generating patterned forces and by differentiating the tissue mechanical properties that harness these forces in specific ways. Therefore, biomechanics lies at the core of connecting the genetic and molecular basis of cell activities to the macroscopic tissue deformations that shape the embryo. Here we discuss what is known of the biomechanics of gastrulation, primarily in amphibians but also comparing similar morphogenic processes in teleost fish and amniotes, and selected events in several species invertebrates. Our goal is to review what is known and identify problems for further research. |
doi_str_mv | 10.1046/j.1432-0436.2003.710301.x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73208403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301468109602772</els_id><sourcerecordid>73208403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5261-b1915e363cc83a6734f8e09cfd65140883eb3cb3c63832d6c0d4de6eff09ea743</originalsourceid><addsrcrecordid>eNqNkF1PwjAUhhujEUT_gpkXerd5-kG3eaVBERISb_C66bozKRkbtiDw790yIrcmTdq0z3nP6UPIHYWIgpCPy4gKzkIQXEYMgEcxBQ402p-R_t_LOem3l6GQCe2RK--XAJBIRi9JjzKZCgasT_ik3gU7DLTDwC_0GvOnYL7AILP1Cs1CV9b4oC6CL-03blvqja2ra3JR6NLjzXEfkM_x23w0CWcf79PRyyw0QyZpmNGUDpFLbkzCtYy5KBKE1BS5HFIBScIx46ZZkiec5dJALnKUWBSQoo4FH5CHLnft6u8t-o1aWW-wLHWF9darmDNIBPAGTDvQuNp7h4VaO7vS7qAoqNaYWqrWi2q9qNaY6oypfVN7e2yyzVaYnyqPihrg_ghob3RZOF0Z60-ckLEUsh3iueN2tsTD_ydQr9Nxd24iRl0ENlZ_LDrljcXKYG4dmo3Ka_uPH_0CbqGazQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73208403</pqid></control><display><type>article</type><title>How we are shaped: The biomechanics of gastrulation</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Keller, Ray ; Davidson, Lance A. ; Shook, David R.</creator><creatorcontrib>Keller, Ray ; Davidson, Lance A. ; Shook, David R.</creatorcontrib><description>Although it is rarely considered so in modern developmental biology, morphogenesis is fundamentally a biomechanical process, and this is especially true of one of the first major morphogenic transformations in development, gastrulation. Cells bring about changes in embryonic form by generating patterned forces and by differentiating the tissue mechanical properties that harness these forces in specific ways. Therefore, biomechanics lies at the core of connecting the genetic and molecular basis of cell activities to the macroscopic tissue deformations that shape the embryo. Here we discuss what is known of the biomechanics of gastrulation, primarily in amphibians but also comparing similar morphogenic processes in teleost fish and amniotes, and selected events in several species invertebrates. Our goal is to review what is known and identify problems for further research.</description><identifier>ISSN: 0301-4681</identifier><identifier>EISSN: 1432-0436</identifier><identifier>DOI: 10.1046/j.1432-0436.2003.710301.x</identifier><identifier>PMID: 12694202</identifier><language>eng</language><publisher>Berlin/Wien: Elsevier B.V</publisher><subject>Animals ; Biological and medical sciences ; Biomechanical Phenomena ; Biomechanics ; Cell differentiation, maturation, development, hematopoiesis ; Cell physiology ; Cell Polarity - physiology ; chick ; Chick Embryo ; development ; Embryo, Nonmammalian ; Endoderm - physiology ; evolution ; Fishes ; Fundamental and applied biological sciences. Psychology ; Gastrula - physiology ; gastrulation ; Mesoderm - physiology ; Molecular and cellular biology ; Morphogenesis ; Movement - physiology ; vertebrate ; Xenopus laevis ; Zebrafish</subject><ispartof>Differentiation (London), 2003-04, Vol.71 (3), p.171-205</ispartof><rights>2003 International Society of Differentiation</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5261-b1915e363cc83a6734f8e09cfd65140883eb3cb3c63832d6c0d4de6eff09ea743</citedby><cites>FETCH-LOGICAL-c5261-b1915e363cc83a6734f8e09cfd65140883eb3cb3c63832d6c0d4de6eff09ea743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14676463$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12694202$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Keller, Ray</creatorcontrib><creatorcontrib>Davidson, Lance A.</creatorcontrib><creatorcontrib>Shook, David R.</creatorcontrib><title>How we are shaped: The biomechanics of gastrulation</title><title>Differentiation (London)</title><addtitle>Differentiation</addtitle><description>Although it is rarely considered so in modern developmental biology, morphogenesis is fundamentally a biomechanical process, and this is especially true of one of the first major morphogenic transformations in development, gastrulation. Cells bring about changes in embryonic form by generating patterned forces and by differentiating the tissue mechanical properties that harness these forces in specific ways. Therefore, biomechanics lies at the core of connecting the genetic and molecular basis of cell activities to the macroscopic tissue deformations that shape the embryo. Here we discuss what is known of the biomechanics of gastrulation, primarily in amphibians but also comparing similar morphogenic processes in teleost fish and amniotes, and selected events in several species invertebrates. Our goal is to review what is known and identify problems for further research.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biomechanical Phenomena</subject><subject>Biomechanics</subject><subject>Cell differentiation, maturation, development, hematopoiesis</subject><subject>Cell physiology</subject><subject>Cell Polarity - physiology</subject><subject>chick</subject><subject>Chick Embryo</subject><subject>development</subject><subject>Embryo, Nonmammalian</subject><subject>Endoderm - physiology</subject><subject>evolution</subject><subject>Fishes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gastrula - physiology</subject><subject>gastrulation</subject><subject>Mesoderm - physiology</subject><subject>Molecular and cellular biology</subject><subject>Morphogenesis</subject><subject>Movement - physiology</subject><subject>vertebrate</subject><subject>Xenopus laevis</subject><subject>Zebrafish</subject><issn>0301-4681</issn><issn>1432-0436</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqNkF1PwjAUhhujEUT_gpkXerd5-kG3eaVBERISb_C66bozKRkbtiDw790yIrcmTdq0z3nP6UPIHYWIgpCPy4gKzkIQXEYMgEcxBQ402p-R_t_LOem3l6GQCe2RK--XAJBIRi9JjzKZCgasT_ik3gU7DLTDwC_0GvOnYL7AILP1Cs1CV9b4oC6CL-03blvqja2ra3JR6NLjzXEfkM_x23w0CWcf79PRyyw0QyZpmNGUDpFLbkzCtYy5KBKE1BS5HFIBScIx46ZZkiec5dJALnKUWBSQoo4FH5CHLnft6u8t-o1aWW-wLHWF9darmDNIBPAGTDvQuNp7h4VaO7vS7qAoqNaYWqrWi2q9qNaY6oypfVN7e2yyzVaYnyqPihrg_ghob3RZOF0Z60-ckLEUsh3iueN2tsTD_ydQr9Nxd24iRl0ENlZ_LDrljcXKYG4dmo3Ka_uPH_0CbqGazQ</recordid><startdate>200304</startdate><enddate>200304</enddate><creator>Keller, Ray</creator><creator>Davidson, Lance A.</creator><creator>Shook, David R.</creator><general>Elsevier B.V</general><general>Blackwell Wissenschafts‐Verlag</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200304</creationdate><title>How we are shaped: The biomechanics of gastrulation</title><author>Keller, Ray ; Davidson, Lance A. ; Shook, David R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5261-b1915e363cc83a6734f8e09cfd65140883eb3cb3c63832d6c0d4de6eff09ea743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biomechanical Phenomena</topic><topic>Biomechanics</topic><topic>Cell differentiation, maturation, development, hematopoiesis</topic><topic>Cell physiology</topic><topic>Cell Polarity - physiology</topic><topic>chick</topic><topic>Chick Embryo</topic><topic>development</topic><topic>Embryo, Nonmammalian</topic><topic>Endoderm - physiology</topic><topic>evolution</topic><topic>Fishes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gastrula - physiology</topic><topic>gastrulation</topic><topic>Mesoderm - physiology</topic><topic>Molecular and cellular biology</topic><topic>Morphogenesis</topic><topic>Movement - physiology</topic><topic>vertebrate</topic><topic>Xenopus laevis</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keller, Ray</creatorcontrib><creatorcontrib>Davidson, Lance A.</creatorcontrib><creatorcontrib>Shook, David R.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Differentiation (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keller, Ray</au><au>Davidson, Lance A.</au><au>Shook, David R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How we are shaped: The biomechanics of gastrulation</atitle><jtitle>Differentiation (London)</jtitle><addtitle>Differentiation</addtitle><date>2003-04</date><risdate>2003</risdate><volume>71</volume><issue>3</issue><spage>171</spage><epage>205</epage><pages>171-205</pages><issn>0301-4681</issn><eissn>1432-0436</eissn><abstract>Although it is rarely considered so in modern developmental biology, morphogenesis is fundamentally a biomechanical process, and this is especially true of one of the first major morphogenic transformations in development, gastrulation. Cells bring about changes in embryonic form by generating patterned forces and by differentiating the tissue mechanical properties that harness these forces in specific ways. Therefore, biomechanics lies at the core of connecting the genetic and molecular basis of cell activities to the macroscopic tissue deformations that shape the embryo. Here we discuss what is known of the biomechanics of gastrulation, primarily in amphibians but also comparing similar morphogenic processes in teleost fish and amniotes, and selected events in several species invertebrates. Our goal is to review what is known and identify problems for further research.</abstract><cop>Berlin/Wien</cop><pub>Elsevier B.V</pub><pmid>12694202</pmid><doi>10.1046/j.1432-0436.2003.710301.x</doi><tpages>35</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-4681 |
ispartof | Differentiation (London), 2003-04, Vol.71 (3), p.171-205 |
issn | 0301-4681 1432-0436 |
language | eng |
recordid | cdi_proquest_miscellaneous_73208403 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Animals Biological and medical sciences Biomechanical Phenomena Biomechanics Cell differentiation, maturation, development, hematopoiesis Cell physiology Cell Polarity - physiology chick Chick Embryo development Embryo, Nonmammalian Endoderm - physiology evolution Fishes Fundamental and applied biological sciences. Psychology Gastrula - physiology gastrulation Mesoderm - physiology Molecular and cellular biology Morphogenesis Movement - physiology vertebrate Xenopus laevis Zebrafish |
title | How we are shaped: The biomechanics of gastrulation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A15%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20we%20are%20shaped:%20The%20biomechanics%20of%20gastrulation&rft.jtitle=Differentiation%20(London)&rft.au=Keller,%20Ray&rft.date=2003-04&rft.volume=71&rft.issue=3&rft.spage=171&rft.epage=205&rft.pages=171-205&rft.issn=0301-4681&rft.eissn=1432-0436&rft_id=info:doi/10.1046/j.1432-0436.2003.710301.x&rft_dat=%3Cproquest_cross%3E73208403%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5261-b1915e363cc83a6734f8e09cfd65140883eb3cb3c63832d6c0d4de6eff09ea743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=73208403&rft_id=info:pmid/12694202&rfr_iscdi=true |