Loading…
Peripheral nerve regeneration with sustained release of poly(phosphoester) microencapsulated nerve growth factor within nerve guide conduits
Prolonged delivery of neurotrophic proteins to the target tissue is valuable in the treatment of various disorders of the nervous system. We have tested in this study whether sustained release of nerve growth factor (NGF) within nerve guide conduits (NGCs), a device used to repair injured nerves, wo...
Saved in:
Published in: | Biomaterials 2003-06, Vol.24 (13), p.2405-2412 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Prolonged delivery of neurotrophic proteins to the target tissue is valuable in the treatment of various disorders of the nervous system. We have tested in this study whether sustained release of nerve growth factor (NGF) within nerve guide conduits (NGCs), a device used to repair injured nerves, would augment peripheral nerve regeneration. NGF-containing polymeric microspheres fabricated from a biodegradable poly(phosphoester) (PPE) polymer were loaded into silicone or PPE conduits to provide for prolonged, site-specific delivery of NGF. The conduits were used to bridge a 10
mm gap in a rat sciatic nerve model. Three months after implantation, morphological analysis revealed higher values of fiber diameter, fiber population and fiber density and lower
G-ratio at the distal end of regenerated nerve cables collected from NGF microsphere-loaded silicone conduits, as compared with those from control conduits loaded with either saline alone, BSA microspheres, or NGF protein without microencapsulation. Beneficial effects on fiber diameter,
G-ratio and fiber density were also observed in the permeable PPE NGCs. Thus, the results confirm a long-term promoting effect of exogenous NGF on morphological regeneration of peripheral nerves. The tissue-engineering approach reported in this study of incorporation of a microsphere protein release system into NGCs holds potential for improved functional recovery in patients whose injured nerves are reconstructed by entubulation. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/S0142-9612(03)00109-1 |