Loading…
Involvement of c-jun N-terminal kinase activation in 15-deoxy-delta12,14-prostaglandin J2-and prostaglandin A1-induced apoptosis in AGS gastric epithelial cells
Cyclopentenone prostaglandins (CyPGs), derivatives of arachidonic acid, have been suggested to exert growth-inhibitory activity through peroxisome proliferator-activated receptor (PPAR)-dependent and -independent mechanisms. Here we examined various eicosanoids for growth inhibition and found that t...
Saved in:
Published in: | Molecular carcinogenesis 2003-05, Vol.37 (1), p.16-24 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cyclopentenone prostaglandins (CyPGs), derivatives of arachidonic acid, have been suggested to exert growth-inhibitory activity through peroxisome proliferator-activated receptor (PPAR)-dependent and -independent mechanisms. Here we examined various eicosanoids for growth inhibition and found that the terminal derivative of prostaglandin (PG) J(2) metabolism, 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)), and PGA(1) markedly inhibited the growth and induced apoptosis in AGS gastric carcinoma cells. There were no significant increases in cell death and DNA-fragmentation in the cells with overexpression of PPARalpha or PPARgamma, indicating the possibility that 15d-PGJ(2) and PGA(1) induced apoptosis through PPAR-independent pathway. Moreover, 15d-PGJ(2) and PGA(1) activated the c-jun N-terminal kinase (JNK) and caspase-3 activity in dose- and time-dependent manners. To examine further the role of JNK signaling cascades in apoptosis induced by 15d-PGJ(2) and PGA(1), we transfected dominant-negative (DN) mutants of JNK plasmid into the cells to analyze the apoptotic characteristics of cells overexpressing DN-JNK following exposure to 15d-PGJ(2) and PGA(1). Overexpression of DN-JNK significantly repressed both endogenous JNK and caspase-3 activity, and subsequently decreased apoptosis induced by 15d-PGJ(2) and PGA(1). These results suggested that CyPGs, such as 15d-PGJ(2) and PGA(1), activated JNK signaling pathway, and that JNK activation may be involved in 15d-PGJ(2)- and PGA(1)-induced apoptosis. |
---|---|
ISSN: | 0899-1987 |