Loading…

Visual data mining

Data mining strategies are usually applied to opportunistically collected data and frequently focus on the discovery of structure such as clusters, bumps, trends, periodicities, associations and correlations, quantization and granularity, and other structures for which a visual data analysis is very...

Full description

Saved in:
Bibliographic Details
Published in:Statistics in medicine 2003-05, Vol.22 (9), p.1383-1397
Main Author: Wegman, Edward J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4192-6e4b463d3ca3d4e6dd750677a5d8fc379525665df3747efa0c696c426320b6973
cites cdi_FETCH-LOGICAL-c4192-6e4b463d3ca3d4e6dd750677a5d8fc379525665df3747efa0c696c426320b6973
container_end_page 1397
container_issue 9
container_start_page 1383
container_title Statistics in medicine
container_volume 22
creator Wegman, Edward J.
description Data mining strategies are usually applied to opportunistically collected data and frequently focus on the discovery of structure such as clusters, bumps, trends, periodicities, associations and correlations, quantization and granularity, and other structures for which a visual data analysis is very appropriate and quite likely to yield insight. However, data mining strategies are often applied to massive data sets where visualization may not be very successful because of the limits of both screen resolution, human visual system resolution as well as the limits of available computational resources. In this paper I suggest some strategies for overcoming such limitations and illustrate visual data mining with some examples of successful attacks on high‐dimensional and large data sets. Copyright © 2003 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/sim.1502
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73225546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73225546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4192-6e4b463d3ca3d4e6dd750677a5d8fc379525665df3747efa0c696c426320b6973</originalsourceid><addsrcrecordid>eNp1z0tLw0AUhuFBFFurIP4A6UZxk3rmepqlFm0rVREvBTfDdDKR0SStmQbtvzelQVeuzubhfLyEHFLoUQB2HnzeoxLYFmlTiDECJvvbpA0MMVJIZYvshfAOQKlkuEtalCEIBaJNjl58qEzWTczSdHNf-OJtn-ykJgvuoLkd8nx99TQYRZP74XhwMYmsoDGLlBMzoXjCreGJcCpJUIJCNDLpp5ZjLJlUSiYpR4EuNWBVrKxgijOYqRh5h5xu_i7K-WflwlLnPliXZaZw8ypo5IxJWU90yNkG2nIeQulSvSh9bsqVpqDX_bru1-v-mh43P6tZ7pI_2ATX4KQBJliTpaUprA9_TmAsGIXaRRv35TO3-ndQP45vm-HG-7B037_elB9aIUepp3dDPY1fL0c3ONIP_AeZ-nyd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73225546</pqid></control><display><type>article</type><title>Visual data mining</title><source>Wiley</source><creator>Wegman, Edward J.</creator><creatorcontrib>Wegman, Edward J.</creatorcontrib><description>Data mining strategies are usually applied to opportunistically collected data and frequently focus on the discovery of structure such as clusters, bumps, trends, periodicities, associations and correlations, quantization and granularity, and other structures for which a visual data analysis is very appropriate and quite likely to yield insight. However, data mining strategies are often applied to massive data sets where visualization may not be very successful because of the limits of both screen resolution, human visual system resolution as well as the limits of available computational resources. In this paper I suggest some strategies for overcoming such limitations and illustrate visual data mining with some examples of successful attacks on high‐dimensional and large data sets. Copyright © 2003 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.1502</identifier><identifier>PMID: 12704604</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Biological and medical sciences ; Computational Biology - methods ; Computer Graphics ; Data Interpretation, Statistical ; EDA ; grand tour ; knowledge discovery ; Medical sciences ; parallel co-ordinates ; saturation brushing</subject><ispartof>Statistics in medicine, 2003-05, Vol.22 (9), p.1383-1397</ispartof><rights>Copyright © 2003 John Wiley &amp; Sons, Ltd.</rights><rights>2003 INIST-CNRS</rights><rights>Copyright 2003 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4192-6e4b463d3ca3d4e6dd750677a5d8fc379525665df3747efa0c696c426320b6973</citedby><cites>FETCH-LOGICAL-c4192-6e4b463d3ca3d4e6dd750677a5d8fc379525665df3747efa0c696c426320b6973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23910,23911,25119,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14794210$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12704604$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wegman, Edward J.</creatorcontrib><title>Visual data mining</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>Data mining strategies are usually applied to opportunistically collected data and frequently focus on the discovery of structure such as clusters, bumps, trends, periodicities, associations and correlations, quantization and granularity, and other structures for which a visual data analysis is very appropriate and quite likely to yield insight. However, data mining strategies are often applied to massive data sets where visualization may not be very successful because of the limits of both screen resolution, human visual system resolution as well as the limits of available computational resources. In this paper I suggest some strategies for overcoming such limitations and illustrate visual data mining with some examples of successful attacks on high‐dimensional and large data sets. Copyright © 2003 John Wiley &amp; Sons, Ltd.</description><subject>Biological and medical sciences</subject><subject>Computational Biology - methods</subject><subject>Computer Graphics</subject><subject>Data Interpretation, Statistical</subject><subject>EDA</subject><subject>grand tour</subject><subject>knowledge discovery</subject><subject>Medical sciences</subject><subject>parallel co-ordinates</subject><subject>saturation brushing</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp1z0tLw0AUhuFBFFurIP4A6UZxk3rmepqlFm0rVREvBTfDdDKR0SStmQbtvzelQVeuzubhfLyEHFLoUQB2HnzeoxLYFmlTiDECJvvbpA0MMVJIZYvshfAOQKlkuEtalCEIBaJNjl58qEzWTczSdHNf-OJtn-ykJgvuoLkd8nx99TQYRZP74XhwMYmsoDGLlBMzoXjCreGJcCpJUIJCNDLpp5ZjLJlUSiYpR4EuNWBVrKxgijOYqRh5h5xu_i7K-WflwlLnPliXZaZw8ypo5IxJWU90yNkG2nIeQulSvSh9bsqVpqDX_bru1-v-mh43P6tZ7pI_2ATX4KQBJliTpaUprA9_TmAsGIXaRRv35TO3-ndQP45vm-HG-7B037_elB9aIUepp3dDPY1fL0c3ONIP_AeZ-nyd</recordid><startdate>20030515</startdate><enddate>20030515</enddate><creator>Wegman, Edward J.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030515</creationdate><title>Visual data mining</title><author>Wegman, Edward J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4192-6e4b463d3ca3d4e6dd750677a5d8fc379525665df3747efa0c696c426320b6973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Biological and medical sciences</topic><topic>Computational Biology - methods</topic><topic>Computer Graphics</topic><topic>Data Interpretation, Statistical</topic><topic>EDA</topic><topic>grand tour</topic><topic>knowledge discovery</topic><topic>Medical sciences</topic><topic>parallel co-ordinates</topic><topic>saturation brushing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wegman, Edward J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wegman, Edward J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visual data mining</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2003-05-15</date><risdate>2003</risdate><volume>22</volume><issue>9</issue><spage>1383</spage><epage>1397</epage><pages>1383-1397</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>Data mining strategies are usually applied to opportunistically collected data and frequently focus on the discovery of structure such as clusters, bumps, trends, periodicities, associations and correlations, quantization and granularity, and other structures for which a visual data analysis is very appropriate and quite likely to yield insight. However, data mining strategies are often applied to massive data sets where visualization may not be very successful because of the limits of both screen resolution, human visual system resolution as well as the limits of available computational resources. In this paper I suggest some strategies for overcoming such limitations and illustrate visual data mining with some examples of successful attacks on high‐dimensional and large data sets. Copyright © 2003 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>12704604</pmid><doi>10.1002/sim.1502</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2003-05, Vol.22 (9), p.1383-1397
issn 0277-6715
1097-0258
language eng
recordid cdi_proquest_miscellaneous_73225546
source Wiley
subjects Biological and medical sciences
Computational Biology - methods
Computer Graphics
Data Interpretation, Statistical
EDA
grand tour
knowledge discovery
Medical sciences
parallel co-ordinates
saturation brushing
title Visual data mining
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A24%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visual%20data%20mining&rft.jtitle=Statistics%20in%20medicine&rft.au=Wegman,%20Edward%20J.&rft.date=2003-05-15&rft.volume=22&rft.issue=9&rft.spage=1383&rft.epage=1397&rft.pages=1383-1397&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.1502&rft_dat=%3Cproquest_cross%3E73225546%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4192-6e4b463d3ca3d4e6dd750677a5d8fc379525665df3747efa0c696c426320b6973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=73225546&rft_id=info:pmid/12704604&rfr_iscdi=true