Loading…
Visual data mining
Data mining strategies are usually applied to opportunistically collected data and frequently focus on the discovery of structure such as clusters, bumps, trends, periodicities, associations and correlations, quantization and granularity, and other structures for which a visual data analysis is very...
Saved in:
Published in: | Statistics in medicine 2003-05, Vol.22 (9), p.1383-1397 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4192-6e4b463d3ca3d4e6dd750677a5d8fc379525665df3747efa0c696c426320b6973 |
---|---|
cites | cdi_FETCH-LOGICAL-c4192-6e4b463d3ca3d4e6dd750677a5d8fc379525665df3747efa0c696c426320b6973 |
container_end_page | 1397 |
container_issue | 9 |
container_start_page | 1383 |
container_title | Statistics in medicine |
container_volume | 22 |
creator | Wegman, Edward J. |
description | Data mining strategies are usually applied to opportunistically collected data and frequently focus on the discovery of structure such as clusters, bumps, trends, periodicities, associations and correlations, quantization and granularity, and other structures for which a visual data analysis is very appropriate and quite likely to yield insight. However, data mining strategies are often applied to massive data sets where visualization may not be very successful because of the limits of both screen resolution, human visual system resolution as well as the limits of available computational resources. In this paper I suggest some strategies for overcoming such limitations and illustrate visual data mining with some examples of successful attacks on high‐dimensional and large data sets. Copyright © 2003 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/sim.1502 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73225546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73225546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4192-6e4b463d3ca3d4e6dd750677a5d8fc379525665df3747efa0c696c426320b6973</originalsourceid><addsrcrecordid>eNp1z0tLw0AUhuFBFFurIP4A6UZxk3rmepqlFm0rVREvBTfDdDKR0SStmQbtvzelQVeuzubhfLyEHFLoUQB2HnzeoxLYFmlTiDECJvvbpA0MMVJIZYvshfAOQKlkuEtalCEIBaJNjl58qEzWTczSdHNf-OJtn-ykJgvuoLkd8nx99TQYRZP74XhwMYmsoDGLlBMzoXjCreGJcCpJUIJCNDLpp5ZjLJlUSiYpR4EuNWBVrKxgijOYqRh5h5xu_i7K-WflwlLnPliXZaZw8ypo5IxJWU90yNkG2nIeQulSvSh9bsqVpqDX_bru1-v-mh43P6tZ7pI_2ATX4KQBJliTpaUprA9_TmAsGIXaRRv35TO3-ndQP45vm-HG-7B037_elB9aIUepp3dDPY1fL0c3ONIP_AeZ-nyd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73225546</pqid></control><display><type>article</type><title>Visual data mining</title><source>Wiley</source><creator>Wegman, Edward J.</creator><creatorcontrib>Wegman, Edward J.</creatorcontrib><description>Data mining strategies are usually applied to opportunistically collected data and frequently focus on the discovery of structure such as clusters, bumps, trends, periodicities, associations and correlations, quantization and granularity, and other structures for which a visual data analysis is very appropriate and quite likely to yield insight. However, data mining strategies are often applied to massive data sets where visualization may not be very successful because of the limits of both screen resolution, human visual system resolution as well as the limits of available computational resources. In this paper I suggest some strategies for overcoming such limitations and illustrate visual data mining with some examples of successful attacks on high‐dimensional and large data sets. Copyright © 2003 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.1502</identifier><identifier>PMID: 12704604</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Biological and medical sciences ; Computational Biology - methods ; Computer Graphics ; Data Interpretation, Statistical ; EDA ; grand tour ; knowledge discovery ; Medical sciences ; parallel co-ordinates ; saturation brushing</subject><ispartof>Statistics in medicine, 2003-05, Vol.22 (9), p.1383-1397</ispartof><rights>Copyright © 2003 John Wiley & Sons, Ltd.</rights><rights>2003 INIST-CNRS</rights><rights>Copyright 2003 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4192-6e4b463d3ca3d4e6dd750677a5d8fc379525665df3747efa0c696c426320b6973</citedby><cites>FETCH-LOGICAL-c4192-6e4b463d3ca3d4e6dd750677a5d8fc379525665df3747efa0c696c426320b6973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23910,23911,25119,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14794210$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12704604$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wegman, Edward J.</creatorcontrib><title>Visual data mining</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>Data mining strategies are usually applied to opportunistically collected data and frequently focus on the discovery of structure such as clusters, bumps, trends, periodicities, associations and correlations, quantization and granularity, and other structures for which a visual data analysis is very appropriate and quite likely to yield insight. However, data mining strategies are often applied to massive data sets where visualization may not be very successful because of the limits of both screen resolution, human visual system resolution as well as the limits of available computational resources. In this paper I suggest some strategies for overcoming such limitations and illustrate visual data mining with some examples of successful attacks on high‐dimensional and large data sets. Copyright © 2003 John Wiley & Sons, Ltd.</description><subject>Biological and medical sciences</subject><subject>Computational Biology - methods</subject><subject>Computer Graphics</subject><subject>Data Interpretation, Statistical</subject><subject>EDA</subject><subject>grand tour</subject><subject>knowledge discovery</subject><subject>Medical sciences</subject><subject>parallel co-ordinates</subject><subject>saturation brushing</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp1z0tLw0AUhuFBFFurIP4A6UZxk3rmepqlFm0rVREvBTfDdDKR0SStmQbtvzelQVeuzubhfLyEHFLoUQB2HnzeoxLYFmlTiDECJvvbpA0MMVJIZYvshfAOQKlkuEtalCEIBaJNjl58qEzWTczSdHNf-OJtn-ykJgvuoLkd8nx99TQYRZP74XhwMYmsoDGLlBMzoXjCreGJcCpJUIJCNDLpp5ZjLJlUSiYpR4EuNWBVrKxgijOYqRh5h5xu_i7K-WflwlLnPliXZaZw8ypo5IxJWU90yNkG2nIeQulSvSh9bsqVpqDX_bru1-v-mh43P6tZ7pI_2ATX4KQBJliTpaUprA9_TmAsGIXaRRv35TO3-ndQP45vm-HG-7B037_elB9aIUepp3dDPY1fL0c3ONIP_AeZ-nyd</recordid><startdate>20030515</startdate><enddate>20030515</enddate><creator>Wegman, Edward J.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030515</creationdate><title>Visual data mining</title><author>Wegman, Edward J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4192-6e4b463d3ca3d4e6dd750677a5d8fc379525665df3747efa0c696c426320b6973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Biological and medical sciences</topic><topic>Computational Biology - methods</topic><topic>Computer Graphics</topic><topic>Data Interpretation, Statistical</topic><topic>EDA</topic><topic>grand tour</topic><topic>knowledge discovery</topic><topic>Medical sciences</topic><topic>parallel co-ordinates</topic><topic>saturation brushing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wegman, Edward J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wegman, Edward J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visual data mining</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2003-05-15</date><risdate>2003</risdate><volume>22</volume><issue>9</issue><spage>1383</spage><epage>1397</epage><pages>1383-1397</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>Data mining strategies are usually applied to opportunistically collected data and frequently focus on the discovery of structure such as clusters, bumps, trends, periodicities, associations and correlations, quantization and granularity, and other structures for which a visual data analysis is very appropriate and quite likely to yield insight. However, data mining strategies are often applied to massive data sets where visualization may not be very successful because of the limits of both screen resolution, human visual system resolution as well as the limits of available computational resources. In this paper I suggest some strategies for overcoming such limitations and illustrate visual data mining with some examples of successful attacks on high‐dimensional and large data sets. Copyright © 2003 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>12704604</pmid><doi>10.1002/sim.1502</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2003-05, Vol.22 (9), p.1383-1397 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_proquest_miscellaneous_73225546 |
source | Wiley |
subjects | Biological and medical sciences Computational Biology - methods Computer Graphics Data Interpretation, Statistical EDA grand tour knowledge discovery Medical sciences parallel co-ordinates saturation brushing |
title | Visual data mining |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A24%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visual%20data%20mining&rft.jtitle=Statistics%20in%20medicine&rft.au=Wegman,%20Edward%20J.&rft.date=2003-05-15&rft.volume=22&rft.issue=9&rft.spage=1383&rft.epage=1397&rft.pages=1383-1397&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.1502&rft_dat=%3Cproquest_cross%3E73225546%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4192-6e4b463d3ca3d4e6dd750677a5d8fc379525665df3747efa0c696c426320b6973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=73225546&rft_id=info:pmid/12704604&rfr_iscdi=true |