Loading…

Repair of bone defects using synthetic mimetics of collagenous extracellular matrices

We have engineered synthetic poly(ethylene glycol) (PEG)–based hydrogels as cell-ingrowth matrices for in situ bone regeneration. These networks contain a combination of pendant oligopeptide ligands for cell adhesion (RGDSP) and substrates for matrix metalloproteinase (MMP) as linkers between PEG ch...

Full description

Saved in:
Bibliographic Details
Published in:Nature biotechnology 2003-05, Vol.21 (5), p.513-518
Main Authors: Hubbell, Jeffrey A, Lutolf, Matthias P, Weber, Franz E, Schmoekel, Hugo G, Schense, Jason C, Kohler, Thomas, Müller, Ralph
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have engineered synthetic poly(ethylene glycol) (PEG)–based hydrogels as cell-ingrowth matrices for in situ bone regeneration. These networks contain a combination of pendant oligopeptide ligands for cell adhesion (RGDSP) and substrates for matrix metalloproteinase (MMP) as linkers between PEG chains. Primary human fibroblasts were shown to migrate within these matrices by integrin- and MMP-dependent mechanisms. Gels used to deliver recombinant human bone morphogenetic protein-2 (rhBMP-2) to the site of critical- sized defects in rat crania were completely infiltrated by cells and were remodeled into bony tissue within five weeks. Bone regeneration was dependent on the proteolytic sensitivity of the matrices and their architecture. The cell-mediated proteolytic invasiveness of the gels and entrapment of rhBMP-2 resulted in efficient and highly localized bone regeneration.
ISSN:1087-0156
1546-1696
DOI:10.1038/nbt818