Loading…
Molecular cloning and expression of cDNA encoding the murine gonadotropin-releasing hormone receptor
The primary structure of the gonadotropin-releasing hormone (GnRH) receptor was determined by sequencing a functional receptor cDNA isolated by expression cloning from an immortalized murine gonadotroph (alpha T3) cell line. Positive clone pools from a cDNA library were detected by screening express...
Saved in:
Published in: | The Journal of biological chemistry 1992-10, Vol.267 (30), p.21281-21284 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c533t-28957c382fb738b89faa329f1922dd09e6fbed4ad35be95fd34ec5a09a6dfa533 |
---|---|
cites | cdi_FETCH-LOGICAL-c533t-28957c382fb738b89faa329f1922dd09e6fbed4ad35be95fd34ec5a09a6dfa533 |
container_end_page | 21284 |
container_issue | 30 |
container_start_page | 21281 |
container_title | The Journal of biological chemistry |
container_volume | 267 |
creator | Reinhart, J Mertz, L.M. Catt, K.J. |
description | The primary structure of the gonadotropin-releasing hormone (GnRH) receptor was determined by sequencing a functional receptor cDNA isolated by expression cloning from an immortalized murine gonadotroph (alpha T3) cell line. Positive clone pools from a cDNA library were detected by screening expressed RNA in aequorin-injected Xenopus laevis oocytes, in which receptor-mediated calcium responses were monitored as light emission during stimulation by GnRH. The isolated receptor cDNA encodes a 327-amino acid protein that has seven putative transmembrane regions and is unique among G protein-coupled receptors in that the predicted sequence lacks a carboxyl-terminal cytoplasmic domain. COS-7 cells transfected with the receptor cDNA expressed high affinity binding sites for GnRH and its agonist and antagonist analogs and exhibited calcium responses to GnRH stimulation. These, and the prominent calcium responses of Xenopus oocytes injected with receptor RNA, were inhibited by GnRH antagonists. Northern blot analysis revealed two mRNAs (1.6 and 3.5 kilobases) in alpha T3 cells and in the mouse pituitary gland, and both transcripts were shown to encode functional GnRH receptors when expressed in Xenopus oocytes. In contrast, a single 4.6-kilobase receptor mRNA was present in rat anterior pituitary gland, ovary, and Leydig cells. The absence of a carboxyl-terminal cytoplasmic domain indicates the importance of other regions of the GnRH receptor in agonist-induced signal transduction, and possibly in receptor desensitization and sequestration. |
doi_str_mv | 10.1016/S0021-9258(19)36602-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73233838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819366025</els_id><sourcerecordid>73233838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-28957c382fb738b89faa329f1922dd09e6fbed4ad35be95fd34ec5a09a6dfa533</originalsourceid><addsrcrecordid>eNqFkUtP3TAUhK2qFb2F_gSkLKqqXYT6EefaqwrxKhKUBSCxsxz7GFwldmoniP57HO4VXWIvvJjvzLFmENon-IBg0v64xpiSWlIuvhH5nbUtpjV_h1YEC1YzTu7eo9Ur8hF9yvkPLqeRZAftEEYFpWKF7GXswcy9TpXpY_DhvtLBVvA0JsjZx1BFV5nj34cVBBPtok8PUA1z8gGq-xi0jVOKow91gh50XoiHmIZY5AQGximmPfTB6T7D5-27i25PT26OftUXV2fnR4cXteGMTTUVkq8NE9R1ayY6IZ3WjEpHJKXWYgmt68A22jLegeTOsgYM11jq1jpdLHbR143vmOLfGfKkBp8N9L0OEOes1owyJsp9CyQtJ01LFke-AU2KOSdwakx-0OmfIlgtNaiXGtSSsSJSvdSgeJnb3y6YuwHs_6lN7kX_stV1Nrp3SQfj8yvWNJgLTgr2c4NBSe3RQ1LZ-FIEWF-ynZSN_o2PPANDyaWt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16514613</pqid></control><display><type>article</type><title>Molecular cloning and expression of cDNA encoding the murine gonadotropin-releasing hormone receptor</title><source>Elsevier ScienceDirect Journals</source><creator>Reinhart, J ; Mertz, L.M. ; Catt, K.J.</creator><creatorcontrib>Reinhart, J ; Mertz, L.M. ; Catt, K.J.</creatorcontrib><description>The primary structure of the gonadotropin-releasing hormone (GnRH) receptor was determined by sequencing a functional receptor cDNA isolated by expression cloning from an immortalized murine gonadotroph (alpha T3) cell line. Positive clone pools from a cDNA library were detected by screening expressed RNA in aequorin-injected Xenopus laevis oocytes, in which receptor-mediated calcium responses were monitored as light emission during stimulation by GnRH. The isolated receptor cDNA encodes a 327-amino acid protein that has seven putative transmembrane regions and is unique among G protein-coupled receptors in that the predicted sequence lacks a carboxyl-terminal cytoplasmic domain. COS-7 cells transfected with the receptor cDNA expressed high affinity binding sites for GnRH and its agonist and antagonist analogs and exhibited calcium responses to GnRH stimulation. These, and the prominent calcium responses of Xenopus oocytes injected with receptor RNA, were inhibited by GnRH antagonists. Northern blot analysis revealed two mRNAs (1.6 and 3.5 kilobases) in alpha T3 cells and in the mouse pituitary gland, and both transcripts were shown to encode functional GnRH receptors when expressed in Xenopus oocytes. In contrast, a single 4.6-kilobase receptor mRNA was present in rat anterior pituitary gland, ovary, and Leydig cells. The absence of a carboxyl-terminal cytoplasmic domain indicates the importance of other regions of the GnRH receptor in agonist-induced signal transduction, and possibly in receptor desensitization and sequestration.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/S0021-9258(19)36602-5</identifier><identifier>PMID: 1328228</identifier><identifier>CODEN: JBCHA3</identifier><language>eng</language><publisher>Bethesda, MD: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Animals ; Base Sequence ; Biological and medical sciences ; Blotting, Northern ; calcium ; cDNA ; Cell Line ; Cell receptors ; Cell structures and functions ; cloning ; Cloning, Molecular ; DNA ; expression ; Fundamental and applied biological sciences. Psychology ; Gene Expression ; genes ; gonadotropin-releasing hormone ; Hormone receptors. Growth factor receptors. Cytokine receptors. Prostaglandin receptors ; Mice ; Molecular and cellular biology ; Molecular Sequence Data ; nucleotide sequence ; Plasmids ; predictions ; receptors ; Receptors, LHRH - genetics ; response ; RNA, Messenger - genetics ; Xenopus laevis</subject><ispartof>The Journal of biological chemistry, 1992-10, Vol.267 (30), p.21281-21284</ispartof><rights>1992 © 1992 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-28957c382fb738b89faa329f1922dd09e6fbed4ad35be95fd34ec5a09a6dfa533</citedby><cites>FETCH-LOGICAL-c533t-28957c382fb738b89faa329f1922dd09e6fbed4ad35be95fd34ec5a09a6dfa533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925819366025$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4405851$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1328228$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reinhart, J</creatorcontrib><creatorcontrib>Mertz, L.M.</creatorcontrib><creatorcontrib>Catt, K.J.</creatorcontrib><title>Molecular cloning and expression of cDNA encoding the murine gonadotropin-releasing hormone receptor</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The primary structure of the gonadotropin-releasing hormone (GnRH) receptor was determined by sequencing a functional receptor cDNA isolated by expression cloning from an immortalized murine gonadotroph (alpha T3) cell line. Positive clone pools from a cDNA library were detected by screening expressed RNA in aequorin-injected Xenopus laevis oocytes, in which receptor-mediated calcium responses were monitored as light emission during stimulation by GnRH. The isolated receptor cDNA encodes a 327-amino acid protein that has seven putative transmembrane regions and is unique among G protein-coupled receptors in that the predicted sequence lacks a carboxyl-terminal cytoplasmic domain. COS-7 cells transfected with the receptor cDNA expressed high affinity binding sites for GnRH and its agonist and antagonist analogs and exhibited calcium responses to GnRH stimulation. These, and the prominent calcium responses of Xenopus oocytes injected with receptor RNA, were inhibited by GnRH antagonists. Northern blot analysis revealed two mRNAs (1.6 and 3.5 kilobases) in alpha T3 cells and in the mouse pituitary gland, and both transcripts were shown to encode functional GnRH receptors when expressed in Xenopus oocytes. In contrast, a single 4.6-kilobase receptor mRNA was present in rat anterior pituitary gland, ovary, and Leydig cells. The absence of a carboxyl-terminal cytoplasmic domain indicates the importance of other regions of the GnRH receptor in agonist-induced signal transduction, and possibly in receptor desensitization and sequestration.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Blotting, Northern</subject><subject>calcium</subject><subject>cDNA</subject><subject>Cell Line</subject><subject>Cell receptors</subject><subject>Cell structures and functions</subject><subject>cloning</subject><subject>Cloning, Molecular</subject><subject>DNA</subject><subject>expression</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression</subject><subject>genes</subject><subject>gonadotropin-releasing hormone</subject><subject>Hormone receptors. Growth factor receptors. Cytokine receptors. Prostaglandin receptors</subject><subject>Mice</subject><subject>Molecular and cellular biology</subject><subject>Molecular Sequence Data</subject><subject>nucleotide sequence</subject><subject>Plasmids</subject><subject>predictions</subject><subject>receptors</subject><subject>Receptors, LHRH - genetics</subject><subject>response</subject><subject>RNA, Messenger - genetics</subject><subject>Xenopus laevis</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNqFkUtP3TAUhK2qFb2F_gSkLKqqXYT6EefaqwrxKhKUBSCxsxz7GFwldmoniP57HO4VXWIvvJjvzLFmENon-IBg0v64xpiSWlIuvhH5nbUtpjV_h1YEC1YzTu7eo9Ur8hF9yvkPLqeRZAftEEYFpWKF7GXswcy9TpXpY_DhvtLBVvA0JsjZx1BFV5nj34cVBBPtok8PUA1z8gGq-xi0jVOKow91gh50XoiHmIZY5AQGximmPfTB6T7D5-27i25PT26OftUXV2fnR4cXteGMTTUVkq8NE9R1ayY6IZ3WjEpHJKXWYgmt68A22jLegeTOsgYM11jq1jpdLHbR143vmOLfGfKkBp8N9L0OEOes1owyJsp9CyQtJ01LFke-AU2KOSdwakx-0OmfIlgtNaiXGtSSsSJSvdSgeJnb3y6YuwHs_6lN7kX_stV1Nrp3SQfj8yvWNJgLTgr2c4NBSe3RQ1LZ-FIEWF-ynZSN_o2PPANDyaWt</recordid><startdate>19921025</startdate><enddate>19921025</enddate><creator>Reinhart, J</creator><creator>Mertz, L.M.</creator><creator>Catt, K.J.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7Z</scope><scope>M81</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19921025</creationdate><title>Molecular cloning and expression of cDNA encoding the murine gonadotropin-releasing hormone receptor</title><author>Reinhart, J ; Mertz, L.M. ; Catt, K.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-28957c382fb738b89faa329f1922dd09e6fbed4ad35be95fd34ec5a09a6dfa533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Blotting, Northern</topic><topic>calcium</topic><topic>cDNA</topic><topic>Cell Line</topic><topic>Cell receptors</topic><topic>Cell structures and functions</topic><topic>cloning</topic><topic>Cloning, Molecular</topic><topic>DNA</topic><topic>expression</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression</topic><topic>genes</topic><topic>gonadotropin-releasing hormone</topic><topic>Hormone receptors. Growth factor receptors. Cytokine receptors. Prostaglandin receptors</topic><topic>Mice</topic><topic>Molecular and cellular biology</topic><topic>Molecular Sequence Data</topic><topic>nucleotide sequence</topic><topic>Plasmids</topic><topic>predictions</topic><topic>receptors</topic><topic>Receptors, LHRH - genetics</topic><topic>response</topic><topic>RNA, Messenger - genetics</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reinhart, J</creatorcontrib><creatorcontrib>Mertz, L.M.</creatorcontrib><creatorcontrib>Catt, K.J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Biochemistry Abstracts 3</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reinhart, J</au><au>Mertz, L.M.</au><au>Catt, K.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular cloning and expression of cDNA encoding the murine gonadotropin-releasing hormone receptor</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1992-10-25</date><risdate>1992</risdate><volume>267</volume><issue>30</issue><spage>21281</spage><epage>21284</epage><pages>21281-21284</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><coden>JBCHA3</coden><abstract>The primary structure of the gonadotropin-releasing hormone (GnRH) receptor was determined by sequencing a functional receptor cDNA isolated by expression cloning from an immortalized murine gonadotroph (alpha T3) cell line. Positive clone pools from a cDNA library were detected by screening expressed RNA in aequorin-injected Xenopus laevis oocytes, in which receptor-mediated calcium responses were monitored as light emission during stimulation by GnRH. The isolated receptor cDNA encodes a 327-amino acid protein that has seven putative transmembrane regions and is unique among G protein-coupled receptors in that the predicted sequence lacks a carboxyl-terminal cytoplasmic domain. COS-7 cells transfected with the receptor cDNA expressed high affinity binding sites for GnRH and its agonist and antagonist analogs and exhibited calcium responses to GnRH stimulation. These, and the prominent calcium responses of Xenopus oocytes injected with receptor RNA, were inhibited by GnRH antagonists. Northern blot analysis revealed two mRNAs (1.6 and 3.5 kilobases) in alpha T3 cells and in the mouse pituitary gland, and both transcripts were shown to encode functional GnRH receptors when expressed in Xenopus oocytes. In contrast, a single 4.6-kilobase receptor mRNA was present in rat anterior pituitary gland, ovary, and Leydig cells. The absence of a carboxyl-terminal cytoplasmic domain indicates the importance of other regions of the GnRH receptor in agonist-induced signal transduction, and possibly in receptor desensitization and sequestration.</abstract><cop>Bethesda, MD</cop><pub>Elsevier Inc</pub><pmid>1328228</pmid><doi>10.1016/S0021-9258(19)36602-5</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 1992-10, Vol.267 (30), p.21281-21284 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_proquest_miscellaneous_73233838 |
source | Elsevier ScienceDirect Journals |
subjects | Amino Acid Sequence Animals Base Sequence Biological and medical sciences Blotting, Northern calcium cDNA Cell Line Cell receptors Cell structures and functions cloning Cloning, Molecular DNA expression Fundamental and applied biological sciences. Psychology Gene Expression genes gonadotropin-releasing hormone Hormone receptors. Growth factor receptors. Cytokine receptors. Prostaglandin receptors Mice Molecular and cellular biology Molecular Sequence Data nucleotide sequence Plasmids predictions receptors Receptors, LHRH - genetics response RNA, Messenger - genetics Xenopus laevis |
title | Molecular cloning and expression of cDNA encoding the murine gonadotropin-releasing hormone receptor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A33%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20cloning%20and%20expression%20of%20cDNA%20encoding%20the%20murine%20gonadotropin-releasing%20hormone%20receptor&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Reinhart,%20J&rft.date=1992-10-25&rft.volume=267&rft.issue=30&rft.spage=21281&rft.epage=21284&rft.pages=21281-21284&rft.issn=0021-9258&rft.eissn=1083-351X&rft.coden=JBCHA3&rft_id=info:doi/10.1016/S0021-9258(19)36602-5&rft_dat=%3Cproquest_cross%3E73233838%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c533t-28957c382fb738b89faa329f1922dd09e6fbed4ad35be95fd34ec5a09a6dfa533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=16514613&rft_id=info:pmid/1328228&rfr_iscdi=true |