Loading…
Dissociation of Steroid Receptor Coactivator 1 and Nuclear Receptor Corepressor Recruitment to the Human Glucocorticoid Receptor by Modification of the Ligand-Receptor Interface: The Role of Tyrosine 735
Within the human glucocorticoid receptor (GR) steroid binding pocket, tyrosine 735 makes hydrophobic contact with the steroid D ring. Substitution of tyrosine735 selectively impairs glucocorticoid transactivation but not transrepression. We now show, using both mammalian two-hybrid and glutathione-S...
Saved in:
Published in: | Molecular endocrinology (Baltimore, Md.) Md.), 2003-05, Vol.17 (5), p.845-859 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Within the human glucocorticoid receptor (GR) steroid binding pocket, tyrosine 735 makes hydrophobic contact with the steroid D ring. Substitution of tyrosine735 selectively impairs glucocorticoid transactivation but not transrepression. We now show, using both mammalian two-hybrid and glutathione-S-transferase pull downs, that such substitutions reduce interaction with steroid receptor coactivator 1, both basally and in response to agonist binding. Using a yeast two-hybrid screen we identified one of the three nuclear receptor interacting domains (NCoR-N1) of nuclear receptor corepressor (NCoR) as interacting with the GR C terminus in an RU486-specific manner. This was confirmed in mammalian two-hybrid experiments, and so we used the NCoR-N1 peptide to probe the GR C-terminal conformation. Substitution of Tyr735phe, Tyr735val, and Tyr735 ser, which impaired steroid receptor coactivator 1 (SRC1) interaction, enhanced NCoR-N1 recruitment, basally and after RU486. RU486 did not direct SRC1 recruitment to any of the GR constructs, and dexamethasone did not allow NCoR-N1 recruitment. Using a glutathione-S-transferase pull-down approach, the NCoR-N1 peptide was found to bind the full-length GR constitutively, and no further induction was seen with RU486, but it was reduced by dexamethasone. As both SRC1 and NCoR are predicted to recognize a common hydrophobic cleft in the GR, it seems that changes favorable to one interaction are detrimental to the other, thus identifying a molecular switch. |
---|---|
ISSN: | 0888-8809 1944-9917 |
DOI: | 10.1210/me.2002-0320 |