Loading…
Investigation of the direct hydride generation nebulizer for the determination of arsenic, antimony and selenium in inductively coupled plasma optical emission spectrometry
A direct hydride generation nebulizer (DHGN) was explored for introduction of the sample in inductively coupled plasma-optical emission spectrometry (ICP-OES) using radially viewed mode. This simple hydride generation system was constructed in our laboratory and requires similar plasma operating con...
Saved in:
Published in: | Analytical and bioanalytical chemistry 2003-05, Vol.376 (1), p.110-117 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A direct hydride generation nebulizer (DHGN) was explored for introduction of the sample in inductively coupled plasma-optical emission spectrometry (ICP-OES) using radially viewed mode. This simple hydride generation system was constructed in our laboratory and requires similar plasma operating conditions to conventional nebulizer-spray-chamber arrangements. This work was focused on the optimization of the operating conditions for hydride generation and evaluation of the main analytical figures of merit for the determination of As, Sb and Se. The excitation conditions of the ICP-OES instrument operated with the DHGN were also explored. Results showed that the analytical performance of the new system for the determination of As, Sb and Se was superior to that of conventional nebulization systems. The DHGN also enabled the determination of elements that do not form volatile hydrides, but with less sensitivity than conventional nebulization systems. Evaluation of the plasma robustness showed that gases generated in hydride generation do not significantly affects the plasma discharge. Similar to conventional hydride generation techniques, analysis with DHGN was susceptible to non-spectroscopic interferences produced by transition metals. Finally, the utility of the DHGN in practical ICP-OES studies was demonstrated in the determination of trace elements in an oyster tissue standard reference material. |
---|---|
ISSN: | 1618-2642 |
DOI: | 10.1007/s00216-003-1856-7 |