Loading…

Metabolic flux and metabolic network analysis of Penicillium chrysogenum using 2D [13C, 1H] COSY NMR measurements and cumulative bondomer simulation

At present two alternative methods are available for analyzing the fluxes in a metabolic network: (1) combining measurements of net conversion rates with a set of metabolite balances including the cofactor balances, or (2) leaving out the cofactor balances and fitting the resulting free fluxes to me...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology and bioengineering 2003-07, Vol.83 (1), p.75-92
Main Authors: van Winden, Wouter A., van Gulik, Walter M., Schipper, Dick, Verheijen, Peter J.T., Krabben, Preben, Vinke, Jacobus L., Heijnen, Joseph J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3728-3b478f12664ac06dfd99c7a1dd8d0baa1b7060cf63d51c3812440cacdcbf47513
cites cdi_FETCH-LOGICAL-c3728-3b478f12664ac06dfd99c7a1dd8d0baa1b7060cf63d51c3812440cacdcbf47513
container_end_page 92
container_issue 1
container_start_page 75
container_title Biotechnology and bioengineering
container_volume 83
creator van Winden, Wouter A.
van Gulik, Walter M.
Schipper, Dick
Verheijen, Peter J.T.
Krabben, Preben
Vinke, Jacobus L.
Heijnen, Joseph J.
description At present two alternative methods are available for analyzing the fluxes in a metabolic network: (1) combining measurements of net conversion rates with a set of metabolite balances including the cofactor balances, or (2) leaving out the cofactor balances and fitting the resulting free fluxes to measured 13C‐labeling data. In this study these two approaches are applied to the fluxes in the glycolysis and pentose phosphate pathway of Penicillium chrysogenum growing on either ammonia or nitrate as the nitrogen source, which is expected to give different pentose phosphate pathway fluxes. The presented flux analyses are based on extensive sets of 2D [13C, 1H] COSY data. A new concept is applied for simulation of this type of 13C‐labeling data: cumulative bondomer modeling. The outcomes of the 13C‐labeling based flux analysis substantially differ from those of the pure metabolite balancing approach. The fluxes that are determined using 13C‐labeling data are shown to be highly dependent on the chosen metabolic network. Extending the traditional nonoxidative pentose phosphate pathway with additional transketolase and transaldolase reactions, extending the glycolysis with a fructose 6‐phosphate aldolase/dihydroxyacetone kinase reaction sequence or adding a phosphoenolpyruvate carboxykinase reaction to the model considerably improves the fit of the measured and the simulated NMR data. The results obtained using the extended version of the nonoxidative pentose phosphate pathway model show that the transketolase and transaldolase reactions need not be assumed reversible to get a good fit of the 13C‐labeling data. Strict statistical testing of the outcomes of 13C‐labeling based flux analysis using realistic measurement errors is demonstrated to be of prime importance for verifying the assumed metabolic model. © 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 83: 75–92, 2003.
doi_str_mv 10.1002/bit.10648
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73285417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18740794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3728-3b478f12664ac06dfd99c7a1dd8d0baa1b7060cf63d51c3812440cacdcbf47513</originalsourceid><addsrcrecordid>eNqFkUFvFSEUhYnR2Gd14R8wbDQxcSwMDDBLnWrbvPbV1Bo1xhAGmIplmAoztu9_-IPFzrNdGVdcTr57TnIPAI8xeokRKndaN-aBUXEHLDCqeYHKGt0FC4QQK0hVl1vgQUrf85cLxu6DLVxyimpSLcCvIzuqdvBOw85PV1AFA_sbKdjxcojnWVV-nVyCQwff2eC0895NPdTf4joNZzbkeUounMFyF37BpHkB8f5X2By__wxXRyfZUaUp2t6GMV1H6KmfvBrdTwvbIZihtxEmN2tDeAjudcon-2jzboMPb9-cNvvF4fHeQfPqsNCEl6IgLeWiwyVjVGnETGfqWnOFjREGtUrhliOGdMeIqbAmApeUIq200W1HeYXJNng2-17E4cdk0yh7l7T1XgU7TElyUoqKYv5fEIt8T17TDD6fQR2HlKLt5EV0vYpriZH805XMXcnrrjL7ZGM6tb01t-SmnAw83QAqaeW7qIJ26ZajggqGSeZ2Zu7Sebv-d6J8fXD6N7qYN1wa7dXNhornknHCK_lxtSeXJ81qudz9JJfkN-rHu4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18740794</pqid></control><display><type>article</type><title>Metabolic flux and metabolic network analysis of Penicillium chrysogenum using 2D [13C, 1H] COSY NMR measurements and cumulative bondomer simulation</title><source>Wiley</source><creator>van Winden, Wouter A. ; van Gulik, Walter M. ; Schipper, Dick ; Verheijen, Peter J.T. ; Krabben, Preben ; Vinke, Jacobus L. ; Heijnen, Joseph J.</creator><creatorcontrib>van Winden, Wouter A. ; van Gulik, Walter M. ; Schipper, Dick ; Verheijen, Peter J.T. ; Krabben, Preben ; Vinke, Jacobus L. ; Heijnen, Joseph J.</creatorcontrib><description>At present two alternative methods are available for analyzing the fluxes in a metabolic network: (1) combining measurements of net conversion rates with a set of metabolite balances including the cofactor balances, or (2) leaving out the cofactor balances and fitting the resulting free fluxes to measured 13C‐labeling data. In this study these two approaches are applied to the fluxes in the glycolysis and pentose phosphate pathway of Penicillium chrysogenum growing on either ammonia or nitrate as the nitrogen source, which is expected to give different pentose phosphate pathway fluxes. The presented flux analyses are based on extensive sets of 2D [13C, 1H] COSY data. A new concept is applied for simulation of this type of 13C‐labeling data: cumulative bondomer modeling. The outcomes of the 13C‐labeling based flux analysis substantially differ from those of the pure metabolite balancing approach. The fluxes that are determined using 13C‐labeling data are shown to be highly dependent on the chosen metabolic network. Extending the traditional nonoxidative pentose phosphate pathway with additional transketolase and transaldolase reactions, extending the glycolysis with a fructose 6‐phosphate aldolase/dihydroxyacetone kinase reaction sequence or adding a phosphoenolpyruvate carboxykinase reaction to the model considerably improves the fit of the measured and the simulated NMR data. The results obtained using the extended version of the nonoxidative pentose phosphate pathway model show that the transketolase and transaldolase reactions need not be assumed reversible to get a good fit of the 13C‐labeling data. Strict statistical testing of the outcomes of 13C‐labeling based flux analysis using realistic measurement errors is demonstrated to be of prime importance for verifying the assumed metabolic model. © 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 83: 75–92, 2003.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.10648</identifier><identifier>PMID: 12740935</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>13C-labeling ; Ammonia - metabolism ; Biological and medical sciences ; Biology of microorganisms of confirmed or potential industrial interest ; Bioreactors - microbiology ; Biotechnology ; bondomer ; Carbon - metabolism ; Carbon Isotopes ; Computer Simulation ; Fundamental and applied biological sciences. Psychology ; Glycolysis - physiology ; Magnetic Resonance Spectroscopy - methods ; metabolic flux analysis ; metabolic network analysis ; Mission oriented research ; Models, Biological ; Nitrates - metabolism ; NMR ; Penicillium chrysogenum ; Penicillium chrysogenum - metabolism ; Pentose Phosphate Pathway - physiology ; Physiology and metabolism ; Protons</subject><ispartof>Biotechnology and bioengineering, 2003-07, Vol.83 (1), p.75-92</ispartof><rights>Copyright © 2003 Wiley Periodicals, Inc.</rights><rights>2003 INIST-CNRS</rights><rights>Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 83: 75-92, 2003.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3728-3b478f12664ac06dfd99c7a1dd8d0baa1b7060cf63d51c3812440cacdcbf47513</citedby><cites>FETCH-LOGICAL-c3728-3b478f12664ac06dfd99c7a1dd8d0baa1b7060cf63d51c3812440cacdcbf47513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14848613$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12740935$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van Winden, Wouter A.</creatorcontrib><creatorcontrib>van Gulik, Walter M.</creatorcontrib><creatorcontrib>Schipper, Dick</creatorcontrib><creatorcontrib>Verheijen, Peter J.T.</creatorcontrib><creatorcontrib>Krabben, Preben</creatorcontrib><creatorcontrib>Vinke, Jacobus L.</creatorcontrib><creatorcontrib>Heijnen, Joseph J.</creatorcontrib><title>Metabolic flux and metabolic network analysis of Penicillium chrysogenum using 2D [13C, 1H] COSY NMR measurements and cumulative bondomer simulation</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>At present two alternative methods are available for analyzing the fluxes in a metabolic network: (1) combining measurements of net conversion rates with a set of metabolite balances including the cofactor balances, or (2) leaving out the cofactor balances and fitting the resulting free fluxes to measured 13C‐labeling data. In this study these two approaches are applied to the fluxes in the glycolysis and pentose phosphate pathway of Penicillium chrysogenum growing on either ammonia or nitrate as the nitrogen source, which is expected to give different pentose phosphate pathway fluxes. The presented flux analyses are based on extensive sets of 2D [13C, 1H] COSY data. A new concept is applied for simulation of this type of 13C‐labeling data: cumulative bondomer modeling. The outcomes of the 13C‐labeling based flux analysis substantially differ from those of the pure metabolite balancing approach. The fluxes that are determined using 13C‐labeling data are shown to be highly dependent on the chosen metabolic network. Extending the traditional nonoxidative pentose phosphate pathway with additional transketolase and transaldolase reactions, extending the glycolysis with a fructose 6‐phosphate aldolase/dihydroxyacetone kinase reaction sequence or adding a phosphoenolpyruvate carboxykinase reaction to the model considerably improves the fit of the measured and the simulated NMR data. The results obtained using the extended version of the nonoxidative pentose phosphate pathway model show that the transketolase and transaldolase reactions need not be assumed reversible to get a good fit of the 13C‐labeling data. Strict statistical testing of the outcomes of 13C‐labeling based flux analysis using realistic measurement errors is demonstrated to be of prime importance for verifying the assumed metabolic model. © 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 83: 75–92, 2003.</description><subject>13C-labeling</subject><subject>Ammonia - metabolism</subject><subject>Biological and medical sciences</subject><subject>Biology of microorganisms of confirmed or potential industrial interest</subject><subject>Bioreactors - microbiology</subject><subject>Biotechnology</subject><subject>bondomer</subject><subject>Carbon - metabolism</subject><subject>Carbon Isotopes</subject><subject>Computer Simulation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glycolysis - physiology</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>metabolic flux analysis</subject><subject>metabolic network analysis</subject><subject>Mission oriented research</subject><subject>Models, Biological</subject><subject>Nitrates - metabolism</subject><subject>NMR</subject><subject>Penicillium chrysogenum</subject><subject>Penicillium chrysogenum - metabolism</subject><subject>Pentose Phosphate Pathway - physiology</subject><subject>Physiology and metabolism</subject><subject>Protons</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkUFvFSEUhYnR2Gd14R8wbDQxcSwMDDBLnWrbvPbV1Bo1xhAGmIplmAoztu9_-IPFzrNdGVdcTr57TnIPAI8xeokRKndaN-aBUXEHLDCqeYHKGt0FC4QQK0hVl1vgQUrf85cLxu6DLVxyimpSLcCvIzuqdvBOw85PV1AFA_sbKdjxcojnWVV-nVyCQwff2eC0895NPdTf4joNZzbkeUounMFyF37BpHkB8f5X2By__wxXRyfZUaUp2t6GMV1H6KmfvBrdTwvbIZihtxEmN2tDeAjudcon-2jzboMPb9-cNvvF4fHeQfPqsNCEl6IgLeWiwyVjVGnETGfqWnOFjREGtUrhliOGdMeIqbAmApeUIq200W1HeYXJNng2-17E4cdk0yh7l7T1XgU7TElyUoqKYv5fEIt8T17TDD6fQR2HlKLt5EV0vYpriZH805XMXcnrrjL7ZGM6tb01t-SmnAw83QAqaeW7qIJ26ZajggqGSeZ2Zu7Sebv-d6J8fXD6N7qYN1wa7dXNhornknHCK_lxtSeXJ81qudz9JJfkN-rHu4Q</recordid><startdate>20030705</startdate><enddate>20030705</enddate><creator>van Winden, Wouter A.</creator><creator>van Gulik, Walter M.</creator><creator>Schipper, Dick</creator><creator>Verheijen, Peter J.T.</creator><creator>Krabben, Preben</creator><creator>Vinke, Jacobus L.</creator><creator>Heijnen, Joseph J.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20030705</creationdate><title>Metabolic flux and metabolic network analysis of Penicillium chrysogenum using 2D [13C, 1H] COSY NMR measurements and cumulative bondomer simulation</title><author>van Winden, Wouter A. ; van Gulik, Walter M. ; Schipper, Dick ; Verheijen, Peter J.T. ; Krabben, Preben ; Vinke, Jacobus L. ; Heijnen, Joseph J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3728-3b478f12664ac06dfd99c7a1dd8d0baa1b7060cf63d51c3812440cacdcbf47513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>13C-labeling</topic><topic>Ammonia - metabolism</topic><topic>Biological and medical sciences</topic><topic>Biology of microorganisms of confirmed or potential industrial interest</topic><topic>Bioreactors - microbiology</topic><topic>Biotechnology</topic><topic>bondomer</topic><topic>Carbon - metabolism</topic><topic>Carbon Isotopes</topic><topic>Computer Simulation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glycolysis - physiology</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>metabolic flux analysis</topic><topic>metabolic network analysis</topic><topic>Mission oriented research</topic><topic>Models, Biological</topic><topic>Nitrates - metabolism</topic><topic>NMR</topic><topic>Penicillium chrysogenum</topic><topic>Penicillium chrysogenum - metabolism</topic><topic>Pentose Phosphate Pathway - physiology</topic><topic>Physiology and metabolism</topic><topic>Protons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Winden, Wouter A.</creatorcontrib><creatorcontrib>van Gulik, Walter M.</creatorcontrib><creatorcontrib>Schipper, Dick</creatorcontrib><creatorcontrib>Verheijen, Peter J.T.</creatorcontrib><creatorcontrib>Krabben, Preben</creatorcontrib><creatorcontrib>Vinke, Jacobus L.</creatorcontrib><creatorcontrib>Heijnen, Joseph J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Winden, Wouter A.</au><au>van Gulik, Walter M.</au><au>Schipper, Dick</au><au>Verheijen, Peter J.T.</au><au>Krabben, Preben</au><au>Vinke, Jacobus L.</au><au>Heijnen, Joseph J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic flux and metabolic network analysis of Penicillium chrysogenum using 2D [13C, 1H] COSY NMR measurements and cumulative bondomer simulation</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2003-07-05</date><risdate>2003</risdate><volume>83</volume><issue>1</issue><spage>75</spage><epage>92</epage><pages>75-92</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>At present two alternative methods are available for analyzing the fluxes in a metabolic network: (1) combining measurements of net conversion rates with a set of metabolite balances including the cofactor balances, or (2) leaving out the cofactor balances and fitting the resulting free fluxes to measured 13C‐labeling data. In this study these two approaches are applied to the fluxes in the glycolysis and pentose phosphate pathway of Penicillium chrysogenum growing on either ammonia or nitrate as the nitrogen source, which is expected to give different pentose phosphate pathway fluxes. The presented flux analyses are based on extensive sets of 2D [13C, 1H] COSY data. A new concept is applied for simulation of this type of 13C‐labeling data: cumulative bondomer modeling. The outcomes of the 13C‐labeling based flux analysis substantially differ from those of the pure metabolite balancing approach. The fluxes that are determined using 13C‐labeling data are shown to be highly dependent on the chosen metabolic network. Extending the traditional nonoxidative pentose phosphate pathway with additional transketolase and transaldolase reactions, extending the glycolysis with a fructose 6‐phosphate aldolase/dihydroxyacetone kinase reaction sequence or adding a phosphoenolpyruvate carboxykinase reaction to the model considerably improves the fit of the measured and the simulated NMR data. The results obtained using the extended version of the nonoxidative pentose phosphate pathway model show that the transketolase and transaldolase reactions need not be assumed reversible to get a good fit of the 13C‐labeling data. Strict statistical testing of the outcomes of 13C‐labeling based flux analysis using realistic measurement errors is demonstrated to be of prime importance for verifying the assumed metabolic model. © 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 83: 75–92, 2003.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>12740935</pmid><doi>10.1002/bit.10648</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2003-07, Vol.83 (1), p.75-92
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_73285417
source Wiley
subjects 13C-labeling
Ammonia - metabolism
Biological and medical sciences
Biology of microorganisms of confirmed or potential industrial interest
Bioreactors - microbiology
Biotechnology
bondomer
Carbon - metabolism
Carbon Isotopes
Computer Simulation
Fundamental and applied biological sciences. Psychology
Glycolysis - physiology
Magnetic Resonance Spectroscopy - methods
metabolic flux analysis
metabolic network analysis
Mission oriented research
Models, Biological
Nitrates - metabolism
NMR
Penicillium chrysogenum
Penicillium chrysogenum - metabolism
Pentose Phosphate Pathway - physiology
Physiology and metabolism
Protons
title Metabolic flux and metabolic network analysis of Penicillium chrysogenum using 2D [13C, 1H] COSY NMR measurements and cumulative bondomer simulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T05%3A57%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20flux%20and%20metabolic%20network%20analysis%20of%20Penicillium%20chrysogenum%20using%202D%20%5B13C,%201H%5D%20COSY%20NMR%20measurements%20and%20cumulative%20bondomer%20simulation&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=van%20Winden,%20Wouter%20A.&rft.date=2003-07-05&rft.volume=83&rft.issue=1&rft.spage=75&rft.epage=92&rft.pages=75-92&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.10648&rft_dat=%3Cproquest_cross%3E18740794%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3728-3b478f12664ac06dfd99c7a1dd8d0baa1b7060cf63d51c3812440cacdcbf47513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=18740794&rft_id=info:pmid/12740935&rfr_iscdi=true