Loading…
Activation of PI3-Kinase Is Required for AMPA Receptor Insertion during LTP of mEPSCs in Cultured Hippocampal Neurons
Hippocampal CA1 homosynaptic long-term potentiation (LTP) is expressed specifically at activated synapses. Increased insertion of postsynaptic α-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptors (AMPARs) appears to be crucial for CA1 LTP. However, the mechanism underlying AMPAR insertion...
Saved in:
Published in: | Neuron (Cambridge, Mass.) Mass.), 2003-05, Vol.38 (4), p.611-624 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hippocampal CA1 homosynaptic long-term potentiation (LTP) is expressed specifically at activated synapses. Increased insertion of postsynaptic α-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptors (AMPARs) appears to be crucial for CA1 LTP. However, the mechanism underlying AMPAR insertion during LTP remains largely unknown. We now report that phosphatidylinositol 3-kinase (PI3K) is complexed with AMPARs at synapses and activated by selective stimulation of synaptic N-methyl-D-aspartate (NMDA) receptors. Activation of the AMPAR-associated PI3K is required for the increased cell surface expression of AMPARs and LTP. Thus, our results strongly suggest that the AMPAR-PI3K complex may constitute a critical molecular signal responsible for AMPAR insertion at activated CA1 synapses during LTP, and consequently, this lipid kinase may serve to determine the polarity of NMDA receptor-dependent synaptic plasticity. |
---|---|
ISSN: | 0896-6273 1097-4199 |
DOI: | 10.1016/S0896-6273(03)00228-9 |