Loading…

Restoring blood-brain barrier P-glycoprotein reduces brain amyloid-beta in a mouse model of Alzheimer's disease

Reduced clearance of amyloid-beta (Abeta) from brain partly underlies increased Abeta brain accumulation in Alzheimer's disease (AD). The mechanistic basis for this pathology is unknown, but recent evidence suggests a neurovascular component in AD etiology. We show here that the ATP-driven pump...

Full description

Saved in:
Bibliographic Details
Published in:Molecular pharmacology 2010-05, Vol.77 (5), p.715-723
Main Authors: Hartz, Anika M S, Miller, David S, Bauer, Björn
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Reduced clearance of amyloid-beta (Abeta) from brain partly underlies increased Abeta brain accumulation in Alzheimer's disease (AD). The mechanistic basis for this pathology is unknown, but recent evidence suggests a neurovascular component in AD etiology. We show here that the ATP-driven pump, P-glycoprotein, specifically mediates efflux transport of Abeta from mouse brain capillaries into the vascular space, thus identifying a critical component of the Abeta brain efflux mechanism. We demonstrate in a transgenic mouse model of AD [human amyloid precursor protein (hAPP)-overexpressing mice; Tg2576 strain] that brain capillary P-glycoprotein expression and transport activity are substantially reduced compared with wild-type control mice, suggesting a mechanism by which Abeta accumulates in the brain in AD. It is noteworthy that dosing 12-week-old, asymptomatic hAPP mice over 7 days with pregnenolone-16alpha-carbonitrile to activate the nuclear receptor pregnane X receptor restores P-glycoprotein expression and transport activity in brain capillaries and significantly reduces brain Abeta levels compared with untreated control mice. Thus, targeting intracellular signals that up-regulate blood-brain barrier P-glycoprotein in the early stages of AD has the potential to increase Abeta clearance from the brain and reduce Abeta brain accumulation. This mechanism suggests a new therapeutic strategy in AD.
ISSN:0026-895X
1521-0111
DOI:10.1124/mol.109.061754