Loading…

Sampling Long Time Scale Protein Motions: OSRW Simulation of Active Site Loop Conformational Free Energies in Formyl-CoA:Oxalate CoA Transferase

X-ray crystallographic snapshots have shown that conformational changes of a tetraglycine loop in the active site of formyl-CoA:oxalate CoA transferase (FRC) play an important role in the catalytic cycle of the enzyme. Orthogonal space random walk (OSRW) simulations have been applied to obtain quant...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2010-06, Vol.132 (21), p.7252-7253
Main Authors: Lee, Sangbae, Chen, Mengen, Yang, Wei, Richards, Nigel G. J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a349t-12b178c9a00e2a1be562fe5e4e9dd568de404ed48a47076afd525119028f18753
cites cdi_FETCH-LOGICAL-a349t-12b178c9a00e2a1be562fe5e4e9dd568de404ed48a47076afd525119028f18753
container_end_page 7253
container_issue 21
container_start_page 7252
container_title Journal of the American Chemical Society
container_volume 132
creator Lee, Sangbae
Chen, Mengen
Yang, Wei
Richards, Nigel G. J
description X-ray crystallographic snapshots have shown that conformational changes of a tetraglycine loop in the active site of formyl-CoA:oxalate CoA transferase (FRC) play an important role in the catalytic cycle of the enzyme. Orthogonal space random walk (OSRW) simulations have been applied to obtain quantitative computational estimates of the relative free energy of the “open” and “closed” conformations of this loop together with the energetic barrier for interconversion of these states in wild type FRC. These OSRW calculations not only show that the two conformations have similar free energies but also predict a barrier that is consistent with the observed turnover number of the enzyme. In an effort to quantitate the importance of specific residues in the tetraglycine loop, OSRW simulations have also been performed on the G258A, G259A, G260A, and G261A FRC variants both to examine the energetic effects of replacing each glycine residue and to correlate the computed energies with kinetic and structural observations. In enzymes with substantially reduced catalytic efficiency (k cat/K M), the OSRW simulations reveal the adoption of additional low energy loop conformations. In the case of the G260A FRC variant, the new conformation identified by simulation is similar to that observed in the X-ray crystal structure of the protein. These results provide further evidence for the power of the OSRW method in sampling conformational space and, hence, in providing quantitative free energy estimates for the conformations adopted by functionally important active site loops. In addition, these simulations model the motions of side chains that are correlated with changes in loop conformation thereby permitting access to long time-scale motions through the use of nanosecond simulations.
doi_str_mv 10.1021/ja101446u
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733091020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733091020</sourcerecordid><originalsourceid>FETCH-LOGICAL-a349t-12b178c9a00e2a1be562fe5e4e9dd568de404ed48a47076afd525119028f18753</originalsourceid><addsrcrecordid>eNptkM1OAjEURhujEUQXvoDpxhgXo22n88eOEFATDEYwLieXmTukZGaK7YyRt_CRLYKs3Nzm3p7vLD5CLjm740zw-xVwxqUM2yPS5YFgXsBFeEy6jDHhRXHod8iZtSu3ShHzU9IRzNFhLLrkewbVulT1kk60G3NVIZ1lUCJ9MbpBVdNn3Shd2z6dzl7f6UxVbQnbC9UFHWSN-nQB1aDL6zUd6rrQpvoFoKRjg0hHNZqlQkudbOw-N6U31IP-9AucCF1kQOcGalugAYvn5KSA0uLF_u2Rt_FoPnz0JtOHp-Fg4oEvk8bjYsGjOEuAMRTAFxiEosAAJSZ5HoRxjpJJzGUMMmJRCEUeiIDzhIm44HEU-D1ys_Oujf5o0TZppWyGZQk16tamke-zxLXLHHm7IzOjrTVYpGujKjCblLN023966N-xV3tru6gwP5B_hTvgegdAZtOVbo2ryf4j-gGj1Ywo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733091020</pqid></control><display><type>article</type><title>Sampling Long Time Scale Protein Motions: OSRW Simulation of Active Site Loop Conformational Free Energies in Formyl-CoA:Oxalate CoA Transferase</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Lee, Sangbae ; Chen, Mengen ; Yang, Wei ; Richards, Nigel G. J</creator><creatorcontrib>Lee, Sangbae ; Chen, Mengen ; Yang, Wei ; Richards, Nigel G. J</creatorcontrib><description>X-ray crystallographic snapshots have shown that conformational changes of a tetraglycine loop in the active site of formyl-CoA:oxalate CoA transferase (FRC) play an important role in the catalytic cycle of the enzyme. Orthogonal space random walk (OSRW) simulations have been applied to obtain quantitative computational estimates of the relative free energy of the “open” and “closed” conformations of this loop together with the energetic barrier for interconversion of these states in wild type FRC. These OSRW calculations not only show that the two conformations have similar free energies but also predict a barrier that is consistent with the observed turnover number of the enzyme. In an effort to quantitate the importance of specific residues in the tetraglycine loop, OSRW simulations have also been performed on the G258A, G259A, G260A, and G261A FRC variants both to examine the energetic effects of replacing each glycine residue and to correlate the computed energies with kinetic and structural observations. In enzymes with substantially reduced catalytic efficiency (k cat/K M), the OSRW simulations reveal the adoption of additional low energy loop conformations. In the case of the G260A FRC variant, the new conformation identified by simulation is similar to that observed in the X-ray crystal structure of the protein. These results provide further evidence for the power of the OSRW method in sampling conformational space and, hence, in providing quantitative free energy estimates for the conformations adopted by functionally important active site loops. In addition, these simulations model the motions of side chains that are correlated with changes in loop conformation thereby permitting access to long time-scale motions through the use of nanosecond simulations.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja101446u</identifier><identifier>PMID: 20446682</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Catalytic Domain ; Coenzyme A-Transferases - chemistry ; Coenzyme A-Transferases - genetics ; Computer Simulation ; Crystallography, X-Ray ; Entropy ; Models, Chemical ; Motion ; Mutation ; Oxalates - chemistry ; Protein Structure, Secondary</subject><ispartof>Journal of the American Chemical Society, 2010-06, Vol.132 (21), p.7252-7253</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a349t-12b178c9a00e2a1be562fe5e4e9dd568de404ed48a47076afd525119028f18753</citedby><cites>FETCH-LOGICAL-a349t-12b178c9a00e2a1be562fe5e4e9dd568de404ed48a47076afd525119028f18753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20446682$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Sangbae</creatorcontrib><creatorcontrib>Chen, Mengen</creatorcontrib><creatorcontrib>Yang, Wei</creatorcontrib><creatorcontrib>Richards, Nigel G. J</creatorcontrib><title>Sampling Long Time Scale Protein Motions: OSRW Simulation of Active Site Loop Conformational Free Energies in Formyl-CoA:Oxalate CoA Transferase</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>X-ray crystallographic snapshots have shown that conformational changes of a tetraglycine loop in the active site of formyl-CoA:oxalate CoA transferase (FRC) play an important role in the catalytic cycle of the enzyme. Orthogonal space random walk (OSRW) simulations have been applied to obtain quantitative computational estimates of the relative free energy of the “open” and “closed” conformations of this loop together with the energetic barrier for interconversion of these states in wild type FRC. These OSRW calculations not only show that the two conformations have similar free energies but also predict a barrier that is consistent with the observed turnover number of the enzyme. In an effort to quantitate the importance of specific residues in the tetraglycine loop, OSRW simulations have also been performed on the G258A, G259A, G260A, and G261A FRC variants both to examine the energetic effects of replacing each glycine residue and to correlate the computed energies with kinetic and structural observations. In enzymes with substantially reduced catalytic efficiency (k cat/K M), the OSRW simulations reveal the adoption of additional low energy loop conformations. In the case of the G260A FRC variant, the new conformation identified by simulation is similar to that observed in the X-ray crystal structure of the protein. These results provide further evidence for the power of the OSRW method in sampling conformational space and, hence, in providing quantitative free energy estimates for the conformations adopted by functionally important active site loops. In addition, these simulations model the motions of side chains that are correlated with changes in loop conformation thereby permitting access to long time-scale motions through the use of nanosecond simulations.</description><subject>Catalytic Domain</subject><subject>Coenzyme A-Transferases - chemistry</subject><subject>Coenzyme A-Transferases - genetics</subject><subject>Computer Simulation</subject><subject>Crystallography, X-Ray</subject><subject>Entropy</subject><subject>Models, Chemical</subject><subject>Motion</subject><subject>Mutation</subject><subject>Oxalates - chemistry</subject><subject>Protein Structure, Secondary</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNptkM1OAjEURhujEUQXvoDpxhgXo22n88eOEFATDEYwLieXmTukZGaK7YyRt_CRLYKs3Nzm3p7vLD5CLjm740zw-xVwxqUM2yPS5YFgXsBFeEy6jDHhRXHod8iZtSu3ShHzU9IRzNFhLLrkewbVulT1kk60G3NVIZ1lUCJ9MbpBVdNn3Shd2z6dzl7f6UxVbQnbC9UFHWSN-nQB1aDL6zUd6rrQpvoFoKRjg0hHNZqlQkudbOw-N6U31IP-9AucCF1kQOcGalugAYvn5KSA0uLF_u2Rt_FoPnz0JtOHp-Fg4oEvk8bjYsGjOEuAMRTAFxiEosAAJSZ5HoRxjpJJzGUMMmJRCEUeiIDzhIm44HEU-D1ys_Oujf5o0TZppWyGZQk16tamke-zxLXLHHm7IzOjrTVYpGujKjCblLN023966N-xV3tru6gwP5B_hTvgegdAZtOVbo2ryf4j-gGj1Ywo</recordid><startdate>20100602</startdate><enddate>20100602</enddate><creator>Lee, Sangbae</creator><creator>Chen, Mengen</creator><creator>Yang, Wei</creator><creator>Richards, Nigel G. J</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100602</creationdate><title>Sampling Long Time Scale Protein Motions: OSRW Simulation of Active Site Loop Conformational Free Energies in Formyl-CoA:Oxalate CoA Transferase</title><author>Lee, Sangbae ; Chen, Mengen ; Yang, Wei ; Richards, Nigel G. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a349t-12b178c9a00e2a1be562fe5e4e9dd568de404ed48a47076afd525119028f18753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Catalytic Domain</topic><topic>Coenzyme A-Transferases - chemistry</topic><topic>Coenzyme A-Transferases - genetics</topic><topic>Computer Simulation</topic><topic>Crystallography, X-Ray</topic><topic>Entropy</topic><topic>Models, Chemical</topic><topic>Motion</topic><topic>Mutation</topic><topic>Oxalates - chemistry</topic><topic>Protein Structure, Secondary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sangbae</creatorcontrib><creatorcontrib>Chen, Mengen</creatorcontrib><creatorcontrib>Yang, Wei</creatorcontrib><creatorcontrib>Richards, Nigel G. J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sangbae</au><au>Chen, Mengen</au><au>Yang, Wei</au><au>Richards, Nigel G. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sampling Long Time Scale Protein Motions: OSRW Simulation of Active Site Loop Conformational Free Energies in Formyl-CoA:Oxalate CoA Transferase</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2010-06-02</date><risdate>2010</risdate><volume>132</volume><issue>21</issue><spage>7252</spage><epage>7253</epage><pages>7252-7253</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>X-ray crystallographic snapshots have shown that conformational changes of a tetraglycine loop in the active site of formyl-CoA:oxalate CoA transferase (FRC) play an important role in the catalytic cycle of the enzyme. Orthogonal space random walk (OSRW) simulations have been applied to obtain quantitative computational estimates of the relative free energy of the “open” and “closed” conformations of this loop together with the energetic barrier for interconversion of these states in wild type FRC. These OSRW calculations not only show that the two conformations have similar free energies but also predict a barrier that is consistent with the observed turnover number of the enzyme. In an effort to quantitate the importance of specific residues in the tetraglycine loop, OSRW simulations have also been performed on the G258A, G259A, G260A, and G261A FRC variants both to examine the energetic effects of replacing each glycine residue and to correlate the computed energies with kinetic and structural observations. In enzymes with substantially reduced catalytic efficiency (k cat/K M), the OSRW simulations reveal the adoption of additional low energy loop conformations. In the case of the G260A FRC variant, the new conformation identified by simulation is similar to that observed in the X-ray crystal structure of the protein. These results provide further evidence for the power of the OSRW method in sampling conformational space and, hence, in providing quantitative free energy estimates for the conformations adopted by functionally important active site loops. In addition, these simulations model the motions of side chains that are correlated with changes in loop conformation thereby permitting access to long time-scale motions through the use of nanosecond simulations.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>20446682</pmid><doi>10.1021/ja101446u</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2010-06, Vol.132 (21), p.7252-7253
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_733091020
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Catalytic Domain
Coenzyme A-Transferases - chemistry
Coenzyme A-Transferases - genetics
Computer Simulation
Crystallography, X-Ray
Entropy
Models, Chemical
Motion
Mutation
Oxalates - chemistry
Protein Structure, Secondary
title Sampling Long Time Scale Protein Motions: OSRW Simulation of Active Site Loop Conformational Free Energies in Formyl-CoA:Oxalate CoA Transferase
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A37%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sampling%20Long%20Time%20Scale%20Protein%20Motions:%20OSRW%20Simulation%20of%20Active%20Site%20Loop%20Conformational%20Free%20Energies%20in%20Formyl-CoA:Oxalate%20CoA%20Transferase&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Lee,%20Sangbae&rft.date=2010-06-02&rft.volume=132&rft.issue=21&rft.spage=7252&rft.epage=7253&rft.pages=7252-7253&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja101446u&rft_dat=%3Cproquest_cross%3E733091020%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a349t-12b178c9a00e2a1be562fe5e4e9dd568de404ed48a47076afd525119028f18753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733091020&rft_id=info:pmid/20446682&rfr_iscdi=true