Loading…
Robust optical control of an optical-amplifier-based flip-flop
We demonstrate new optical techniques for externally controlling the latchable output power of a semiconductor-optical-amplifier-based flip-flop. Optical 'set' and 'reset' signals increase and decrease the re-fractive index, respectively, via cross-phase modulation (XPM). Set sig...
Saved in:
Published in: | Optics express 2000-01, Vol.6 (3), p.75-80 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We demonstrate new optical techniques for externally controlling the latchable output power of a semiconductor-optical-amplifier-based flip-flop. Optical 'set' and 'reset' signals increase and decrease the re-fractive index, respectively, via cross-phase modulation (XPM). Set signals, which deplete the carrier density, have wavelengths between 1533 and 1568 nm, and powers as low as 22 microW. Reset is performed with carrier-generating 'positive' optical pulses at 1306 and 1466 nm, and minimum powers below 1 mW. These techniques are useful for digital optical-processing functions such as bit-length conversion, retiming, and demultiplexing. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.6.000075 |