Loading…

Rigorous time domain simulation of momentum transfer between light and microscopic particles in optical trapping

Laser light can exert forces on matter by exchanging momentum in form of radiation pressure and refraction. Although these forces are small, they are sufficient to trap and manipulate microscopic particles [Phys. Rev. Lett. 24, 156 (1970)]. In this paper, we study the optical trapping phenomena by u...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2004-05, Vol.12 (10), p.2220-2230
Main Authors: Zhang, Dianwen, Yuan, X, Tjin, S, Krishnan, S
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Laser light can exert forces on matter by exchanging momentum in form of radiation pressure and refraction. Although these forces are small, they are sufficient to trap and manipulate microscopic particles [Phys. Rev. Lett. 24, 156 (1970)]. In this paper, we study the optical trapping phenomena by using computer simulation to show a detailed account of the process of momentum exchange between a focused light and a microscopic particle in an optical trapping by use of the finite difference time domain method. This approach provides a practical routine to predict the magnitude of the exchanged momentum, track the particle in a trapping process, and determine a trapping point, where dynamic equilibrium happens. Here we also theoretically describe the transfer procedure of orbital angular momentum from a focused optical vortex to the particle.
ISSN:1094-4087
1094-4087
DOI:10.1364/opex.12.002220