Loading…
Time efficient Chinese remainder theorem algorithm for full-field fringe phase analysis in multi-wavelength interferometry
We present a computationally efficient method for solving the method of excess fractions used in multi-frequency interferometry for absolute phase measurement. The Chinese remainder theorem, an algorithm from number theory is used to provide a unique solution for absolute distance via a set of congr...
Saved in:
Published in: | Optics express 2004-03, Vol.12 (6), p.1136-1143 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a computationally efficient method for solving the method of excess fractions used in multi-frequency interferometry for absolute phase measurement. The Chinese remainder theorem, an algorithm from number theory is used to provide a unique solution for absolute distance via a set of congruence's based on modulo arithmetic. We describe a modified version of this theorem to overcome its sensitivity to phase measurement noise. A comparison with the method of excess fractions has been performed to assess the performance of the algorithm and processing speed achieved. Experimental data has been obtained via a full-field fringe projection system for three projected fringe frequencies and processed using the modified Chinese remainder theorem algorithm. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OPEX.12.001136 |