Loading…

A non-empirical chromophoric interpretation of CD spectra of DNA G-quadruplex structures

G-quadruplex DNA (G4-DNA) structures are four-stranded helical DNA (or RNA) structures, comprising stacks of G-tetrads, which are the outcome of planar association of four guanines in a cyclic Hoogsteen hydrogen-bonding arrangement. In the last decade the number of publications where CD spectroscopy...

Full description

Saved in:
Bibliographic Details
Published in:Organic & biomolecular chemistry 2010-06, Vol.8 (12), p.2683-2692
Main Authors: Masiero, Stefano, Trotta, Roberta, Pieraccini, Silvia, De Tito, Stefano, Perone, Rosaria, Randazzo, Antonio, Spada, Gian Piero
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:G-quadruplex DNA (G4-DNA) structures are four-stranded helical DNA (or RNA) structures, comprising stacks of G-tetrads, which are the outcome of planar association of four guanines in a cyclic Hoogsteen hydrogen-bonding arrangement. In the last decade the number of publications where CD spectroscopy has been used to study G4-DNAs, is extremely high. However, with very few exceptions, these investigations use an empirical interpretation of CD spectra. In this interpretation two basic types of CD spectra have been associated to a single specific difference in the features of the strand folding, i.e. the relative orientation of the strands, "parallel" (all strands have the same 5' to 3' orientation) or "antiparallel". Different examples taken from the literature where the empirical interpretation is not followed or is meaningless are presented and discussed. Furthermore, the case of quadruplexes formed by monomeric guanosine derivatives, where there is no strand connecting the adjacent quartets and the definition parallel/antiparallel strands cannot apply, will be discussed. The different spectral features observed for different G-quadruplexes is rationalised in terms of chromophores responsible for the electronic transitions. A simplified exciton coupling approach or more refined QM calculations allow to interpret the different CD features in terms of different stacking orientation (head-to-tail, head-to-head, tail-to-tail) between adjacent G-quartets irrespectively of the relative orientation of the stands (parallel/antiparallel).
ISSN:1477-0520
1477-0539
DOI:10.1039/c003428b