Loading…
Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene
We first reported that polyvinylpyrrolidone-protected graphene was dispersed well in water and had good electrochemical reduction toward O2 and H2O2. With glucose oxidase (GOD) as an enzyme model, we constructed a novel polyvinylpyrrolidone-protected graphene/polyethylenimine-functionalized ionic li...
Saved in:
Published in: | Analytical chemistry (Washington) 2009-03, Vol.81 (6), p.2378-2382 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We first reported that polyvinylpyrrolidone-protected graphene was dispersed well in water and had good electrochemical reduction toward O2 and H2O2. With glucose oxidase (GOD) as an enzyme model, we constructed a novel polyvinylpyrrolidone-protected graphene/polyethylenimine-functionalized ionic liquid/GOD electrochemical biosensor, which achieved the direct electron transfer of GOD, maintained its bioactivity and showed potential application for the fabrication of novel glucose biosensors with linear glucose response up to 14 mM. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac802193c |