Loading…

Atomic-Resolution Microscopy in Water

The scanning tunneling microscope is revolutionizing the study of surfaces. In ultrahigh vacuum it is capable not only of imaging individual atoms but also of determining energy states on an atom-by-atom basis. It is now possible to operate this instrument in water. Aqueous optical microscopy is con...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 1986-04, Vol.232 (4747), p.211-213
Main Authors: Sonnenfeld, Richard, Hansma, Paul K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c747t-67461ad44143721c27aaf55970d835efd4f2751496193312928f7e0eee9305993
cites cdi_FETCH-LOGICAL-c747t-67461ad44143721c27aaf55970d835efd4f2751496193312928f7e0eee9305993
container_end_page 213
container_issue 4747
container_start_page 211
container_title Science (American Association for the Advancement of Science)
container_volume 232
creator Sonnenfeld, Richard
Hansma, Paul K.
description The scanning tunneling microscope is revolutionizing the study of surfaces. In ultrahigh vacuum it is capable not only of imaging individual atoms but also of determining energy states on an atom-by-atom basis. It is now possible to operate this instrument in water. Aqueous optical microscopy is confined to a lateral resolution limit of about 2000 angstroms, and aqueous x-ray microscopy has yielded a lateral resolution of 75 angstroms. With a scanning tunneling microscope, an image of a graphite surface immersed in deionized water was obtained with features less than 3 angstroms apart clearly resolved. Further, an image measured in saline solution demonstrated that the instrument can be operated under conditions useful for many biological samples.
doi_str_mv 10.1126/science.232.4747.211
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_733196999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A4374744</galeid><jstor_id>1696880</jstor_id><sourcerecordid>A4374744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c747t-67461ad44143721c27aaf55970d835efd4f2751496193312928f7e0eee9305993</originalsourceid><addsrcrecordid>eNqN0luLEzEUB_AgiltXv8EiRdB92J2a--WxFrcuVAteH0PMnClTppOazID77c1sC7suRUseAjm_E3L5I3RG8IQQKt8mX0PrYUIZnXDF1YQS8giNCDaiMBSzx2iEMZOFxkqcoGcprTHONcOeohOilMYaixF6Pe3CpvbFZ0ih6bs6tOOPtY8h-bC9Gdft-IfrID5HTyrXJHixn0_Rt6v3X2cfisVyfj2bLgqfD9AVUnFJXMk54UxR4qlyrhLCKFxqJqAqeUWVINxIYhgj1FBdKcAAYBgWxrBTdL7bdxvDrx5SZzd18tA0roXQJ6tyl5HmVr75p2SSYcmY-C-knHGs2bDjqwdwHfrY5utaSpiggkue0cUOrVwDtm6r0EXnV9BCdE1ooarz8jTfPv_IoC8P6DxKyG9-gJ__xbPo4He3cn1K9vrLp2Pl8vux8t38SKnni_vy4pD0oWlgBTYnYra8r_lOD6lKESq7jfXGxRtLsB2SbPdJtjnJdkhyfm-S217uv6P_uYHyrmkf3QzOdmCduhDv6tJIrTH7A4Fl8dA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213525464</pqid></control><display><type>article</type><title>Atomic-Resolution Microscopy in Water</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Science Online_科学在线</source><creator>Sonnenfeld, Richard ; Hansma, Paul K.</creator><creatorcontrib>Sonnenfeld, Richard ; Hansma, Paul K.</creatorcontrib><description>The scanning tunneling microscope is revolutionizing the study of surfaces. In ultrahigh vacuum it is capable not only of imaging individual atoms but also of determining energy states on an atom-by-atom basis. It is now possible to operate this instrument in water. Aqueous optical microscopy is confined to a lateral resolution limit of about 2000 angstroms, and aqueous x-ray microscopy has yielded a lateral resolution of 75 angstroms. With a scanning tunneling microscope, an image of a graphite surface immersed in deionized water was obtained with features less than 3 angstroms apart clearly resolved. Further, an image measured in saline solution demonstrated that the instrument can be operated under conditions useful for many biological samples.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.232.4747.211</identifier><identifier>PMID: 17780805</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Electric current ; Electric potential ; Graphite ; Imaging ; Josephson effect ; Methods ; Micrometers ; Microscope and microscopy ; Microscopes ; Microscopy ; Scanning electron microscopes ; Technology ; Travel ; Tunneling spectroscopy ; Water ; Water immersion ; X-ray microscope ; X-ray microscopes</subject><ispartof>Science (American Association for the Advancement of Science), 1986-04, Vol.232 (4747), p.211-213</ispartof><rights>Copyright 1986 The American Association for the Advancement of Science</rights><rights>COPYRIGHT 1986 American Association for the Advancement of Science</rights><rights>COPYRIGHT 1986 American Association for the Advancement of Science</rights><rights>Copyright American Association for the Advancement of Science Apr 11, 1986</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c747t-67461ad44143721c27aaf55970d835efd4f2751496193312928f7e0eee9305993</citedby><cites>FETCH-LOGICAL-c747t-67461ad44143721c27aaf55970d835efd4f2751496193312928f7e0eee9305993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1696880$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1696880$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,2884,2885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17780805$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sonnenfeld, Richard</creatorcontrib><creatorcontrib>Hansma, Paul K.</creatorcontrib><title>Atomic-Resolution Microscopy in Water</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The scanning tunneling microscope is revolutionizing the study of surfaces. In ultrahigh vacuum it is capable not only of imaging individual atoms but also of determining energy states on an atom-by-atom basis. It is now possible to operate this instrument in water. Aqueous optical microscopy is confined to a lateral resolution limit of about 2000 angstroms, and aqueous x-ray microscopy has yielded a lateral resolution of 75 angstroms. With a scanning tunneling microscope, an image of a graphite surface immersed in deionized water was obtained with features less than 3 angstroms apart clearly resolved. Further, an image measured in saline solution demonstrated that the instrument can be operated under conditions useful for many biological samples.</description><subject>Electric current</subject><subject>Electric potential</subject><subject>Graphite</subject><subject>Imaging</subject><subject>Josephson effect</subject><subject>Methods</subject><subject>Micrometers</subject><subject>Microscope and microscopy</subject><subject>Microscopes</subject><subject>Microscopy</subject><subject>Scanning electron microscopes</subject><subject>Technology</subject><subject>Travel</subject><subject>Tunneling spectroscopy</subject><subject>Water</subject><subject>Water immersion</subject><subject>X-ray microscope</subject><subject>X-ray microscopes</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNqN0luLEzEUB_AgiltXv8EiRdB92J2a--WxFrcuVAteH0PMnClTppOazID77c1sC7suRUseAjm_E3L5I3RG8IQQKt8mX0PrYUIZnXDF1YQS8giNCDaiMBSzx2iEMZOFxkqcoGcprTHONcOeohOilMYaixF6Pe3CpvbFZ0ih6bs6tOOPtY8h-bC9Gdft-IfrID5HTyrXJHixn0_Rt6v3X2cfisVyfj2bLgqfD9AVUnFJXMk54UxR4qlyrhLCKFxqJqAqeUWVINxIYhgj1FBdKcAAYBgWxrBTdL7bdxvDrx5SZzd18tA0roXQJ6tyl5HmVr75p2SSYcmY-C-knHGs2bDjqwdwHfrY5utaSpiggkue0cUOrVwDtm6r0EXnV9BCdE1ooarz8jTfPv_IoC8P6DxKyG9-gJ__xbPo4He3cn1K9vrLp2Pl8vux8t38SKnni_vy4pD0oWlgBTYnYra8r_lOD6lKESq7jfXGxRtLsB2SbPdJtjnJdkhyfm-S217uv6P_uYHyrmkf3QzOdmCduhDv6tJIrTH7A4Fl8dA</recordid><startdate>19860411</startdate><enddate>19860411</enddate><creator>Sonnenfeld, Richard</creator><creator>Hansma, Paul K.</creator><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>IBG</scope><scope>IOV</scope><scope>ISN</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19860411</creationdate><title>Atomic-Resolution Microscopy in Water</title><author>Sonnenfeld, Richard ; Hansma, Paul K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c747t-67461ad44143721c27aaf55970d835efd4f2751496193312928f7e0eee9305993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Electric current</topic><topic>Electric potential</topic><topic>Graphite</topic><topic>Imaging</topic><topic>Josephson effect</topic><topic>Methods</topic><topic>Micrometers</topic><topic>Microscope and microscopy</topic><topic>Microscopes</topic><topic>Microscopy</topic><topic>Scanning electron microscopes</topic><topic>Technology</topic><topic>Travel</topic><topic>Tunneling spectroscopy</topic><topic>Water</topic><topic>Water immersion</topic><topic>X-ray microscope</topic><topic>X-ray microscopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sonnenfeld, Richard</creatorcontrib><creatorcontrib>Hansma, Paul K.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>Biography resource center</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sonnenfeld, Richard</au><au>Hansma, Paul K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic-Resolution Microscopy in Water</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>1986-04-11</date><risdate>1986</risdate><volume>232</volume><issue>4747</issue><spage>211</spage><epage>213</epage><pages>211-213</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>The scanning tunneling microscope is revolutionizing the study of surfaces. In ultrahigh vacuum it is capable not only of imaging individual atoms but also of determining energy states on an atom-by-atom basis. It is now possible to operate this instrument in water. Aqueous optical microscopy is confined to a lateral resolution limit of about 2000 angstroms, and aqueous x-ray microscopy has yielded a lateral resolution of 75 angstroms. With a scanning tunneling microscope, an image of a graphite surface immersed in deionized water was obtained with features less than 3 angstroms apart clearly resolved. Further, an image measured in saline solution demonstrated that the instrument can be operated under conditions useful for many biological samples.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>17780805</pmid><doi>10.1126/science.232.4747.211</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 1986-04, Vol.232 (4747), p.211-213
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_733196999
source JSTOR Archival Journals and Primary Sources Collection; Science Online_科学在线
subjects Electric current
Electric potential
Graphite
Imaging
Josephson effect
Methods
Micrometers
Microscope and microscopy
Microscopes
Microscopy
Scanning electron microscopes
Technology
Travel
Tunneling spectroscopy
Water
Water immersion
X-ray microscope
X-ray microscopes
title Atomic-Resolution Microscopy in Water
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A31%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic-Resolution%20Microscopy%20in%20Water&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Sonnenfeld,%20Richard&rft.date=1986-04-11&rft.volume=232&rft.issue=4747&rft.spage=211&rft.epage=213&rft.pages=211-213&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.232.4747.211&rft_dat=%3Cgale_proqu%3EA4374744%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c747t-67461ad44143721c27aaf55970d835efd4f2751496193312928f7e0eee9305993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=213525464&rft_id=info:pmid/17780805&rft_galeid=A4374744&rft_jstor_id=1696880&rfr_iscdi=true