Loading…
Atomic-Resolution Microscopy in Water
The scanning tunneling microscope is revolutionizing the study of surfaces. In ultrahigh vacuum it is capable not only of imaging individual atoms but also of determining energy states on an atom-by-atom basis. It is now possible to operate this instrument in water. Aqueous optical microscopy is con...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 1986-04, Vol.232 (4747), p.211-213 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c747t-67461ad44143721c27aaf55970d835efd4f2751496193312928f7e0eee9305993 |
---|---|
cites | cdi_FETCH-LOGICAL-c747t-67461ad44143721c27aaf55970d835efd4f2751496193312928f7e0eee9305993 |
container_end_page | 213 |
container_issue | 4747 |
container_start_page | 211 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 232 |
creator | Sonnenfeld, Richard Hansma, Paul K. |
description | The scanning tunneling microscope is revolutionizing the study of surfaces. In ultrahigh vacuum it is capable not only of imaging individual atoms but also of determining energy states on an atom-by-atom basis. It is now possible to operate this instrument in water. Aqueous optical microscopy is confined to a lateral resolution limit of about 2000 angstroms, and aqueous x-ray microscopy has yielded a lateral resolution of 75 angstroms. With a scanning tunneling microscope, an image of a graphite surface immersed in deionized water was obtained with features less than 3 angstroms apart clearly resolved. Further, an image measured in saline solution demonstrated that the instrument can be operated under conditions useful for many biological samples. |
doi_str_mv | 10.1126/science.232.4747.211 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_733196999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A4374744</galeid><jstor_id>1696880</jstor_id><sourcerecordid>A4374744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c747t-67461ad44143721c27aaf55970d835efd4f2751496193312928f7e0eee9305993</originalsourceid><addsrcrecordid>eNqN0luLEzEUB_AgiltXv8EiRdB92J2a--WxFrcuVAteH0PMnClTppOazID77c1sC7suRUseAjm_E3L5I3RG8IQQKt8mX0PrYUIZnXDF1YQS8giNCDaiMBSzx2iEMZOFxkqcoGcprTHONcOeohOilMYaixF6Pe3CpvbFZ0ih6bs6tOOPtY8h-bC9Gdft-IfrID5HTyrXJHixn0_Rt6v3X2cfisVyfj2bLgqfD9AVUnFJXMk54UxR4qlyrhLCKFxqJqAqeUWVINxIYhgj1FBdKcAAYBgWxrBTdL7bdxvDrx5SZzd18tA0roXQJ6tyl5HmVr75p2SSYcmY-C-knHGs2bDjqwdwHfrY5utaSpiggkue0cUOrVwDtm6r0EXnV9BCdE1ooarz8jTfPv_IoC8P6DxKyG9-gJ__xbPo4He3cn1K9vrLp2Pl8vux8t38SKnni_vy4pD0oWlgBTYnYra8r_lOD6lKESq7jfXGxRtLsB2SbPdJtjnJdkhyfm-S217uv6P_uYHyrmkf3QzOdmCduhDv6tJIrTH7A4Fl8dA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213525464</pqid></control><display><type>article</type><title>Atomic-Resolution Microscopy in Water</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Science Online_科学在线</source><creator>Sonnenfeld, Richard ; Hansma, Paul K.</creator><creatorcontrib>Sonnenfeld, Richard ; Hansma, Paul K.</creatorcontrib><description>The scanning tunneling microscope is revolutionizing the study of surfaces. In ultrahigh vacuum it is capable not only of imaging individual atoms but also of determining energy states on an atom-by-atom basis. It is now possible to operate this instrument in water. Aqueous optical microscopy is confined to a lateral resolution limit of about 2000 angstroms, and aqueous x-ray microscopy has yielded a lateral resolution of 75 angstroms. With a scanning tunneling microscope, an image of a graphite surface immersed in deionized water was obtained with features less than 3 angstroms apart clearly resolved. Further, an image measured in saline solution demonstrated that the instrument can be operated under conditions useful for many biological samples.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.232.4747.211</identifier><identifier>PMID: 17780805</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Electric current ; Electric potential ; Graphite ; Imaging ; Josephson effect ; Methods ; Micrometers ; Microscope and microscopy ; Microscopes ; Microscopy ; Scanning electron microscopes ; Technology ; Travel ; Tunneling spectroscopy ; Water ; Water immersion ; X-ray microscope ; X-ray microscopes</subject><ispartof>Science (American Association for the Advancement of Science), 1986-04, Vol.232 (4747), p.211-213</ispartof><rights>Copyright 1986 The American Association for the Advancement of Science</rights><rights>COPYRIGHT 1986 American Association for the Advancement of Science</rights><rights>COPYRIGHT 1986 American Association for the Advancement of Science</rights><rights>Copyright American Association for the Advancement of Science Apr 11, 1986</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c747t-67461ad44143721c27aaf55970d835efd4f2751496193312928f7e0eee9305993</citedby><cites>FETCH-LOGICAL-c747t-67461ad44143721c27aaf55970d835efd4f2751496193312928f7e0eee9305993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1696880$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1696880$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,2884,2885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17780805$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sonnenfeld, Richard</creatorcontrib><creatorcontrib>Hansma, Paul K.</creatorcontrib><title>Atomic-Resolution Microscopy in Water</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The scanning tunneling microscope is revolutionizing the study of surfaces. In ultrahigh vacuum it is capable not only of imaging individual atoms but also of determining energy states on an atom-by-atom basis. It is now possible to operate this instrument in water. Aqueous optical microscopy is confined to a lateral resolution limit of about 2000 angstroms, and aqueous x-ray microscopy has yielded a lateral resolution of 75 angstroms. With a scanning tunneling microscope, an image of a graphite surface immersed in deionized water was obtained with features less than 3 angstroms apart clearly resolved. Further, an image measured in saline solution demonstrated that the instrument can be operated under conditions useful for many biological samples.</description><subject>Electric current</subject><subject>Electric potential</subject><subject>Graphite</subject><subject>Imaging</subject><subject>Josephson effect</subject><subject>Methods</subject><subject>Micrometers</subject><subject>Microscope and microscopy</subject><subject>Microscopes</subject><subject>Microscopy</subject><subject>Scanning electron microscopes</subject><subject>Technology</subject><subject>Travel</subject><subject>Tunneling spectroscopy</subject><subject>Water</subject><subject>Water immersion</subject><subject>X-ray microscope</subject><subject>X-ray microscopes</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNqN0luLEzEUB_AgiltXv8EiRdB92J2a--WxFrcuVAteH0PMnClTppOazID77c1sC7suRUseAjm_E3L5I3RG8IQQKt8mX0PrYUIZnXDF1YQS8giNCDaiMBSzx2iEMZOFxkqcoGcprTHONcOeohOilMYaixF6Pe3CpvbFZ0ih6bs6tOOPtY8h-bC9Gdft-IfrID5HTyrXJHixn0_Rt6v3X2cfisVyfj2bLgqfD9AVUnFJXMk54UxR4qlyrhLCKFxqJqAqeUWVINxIYhgj1FBdKcAAYBgWxrBTdL7bdxvDrx5SZzd18tA0roXQJ6tyl5HmVr75p2SSYcmY-C-knHGs2bDjqwdwHfrY5utaSpiggkue0cUOrVwDtm6r0EXnV9BCdE1ooarz8jTfPv_IoC8P6DxKyG9-gJ__xbPo4He3cn1K9vrLp2Pl8vux8t38SKnni_vy4pD0oWlgBTYnYra8r_lOD6lKESq7jfXGxRtLsB2SbPdJtjnJdkhyfm-S217uv6P_uYHyrmkf3QzOdmCduhDv6tJIrTH7A4Fl8dA</recordid><startdate>19860411</startdate><enddate>19860411</enddate><creator>Sonnenfeld, Richard</creator><creator>Hansma, Paul K.</creator><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>IBG</scope><scope>IOV</scope><scope>ISN</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19860411</creationdate><title>Atomic-Resolution Microscopy in Water</title><author>Sonnenfeld, Richard ; Hansma, Paul K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c747t-67461ad44143721c27aaf55970d835efd4f2751496193312928f7e0eee9305993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Electric current</topic><topic>Electric potential</topic><topic>Graphite</topic><topic>Imaging</topic><topic>Josephson effect</topic><topic>Methods</topic><topic>Micrometers</topic><topic>Microscope and microscopy</topic><topic>Microscopes</topic><topic>Microscopy</topic><topic>Scanning electron microscopes</topic><topic>Technology</topic><topic>Travel</topic><topic>Tunneling spectroscopy</topic><topic>Water</topic><topic>Water immersion</topic><topic>X-ray microscope</topic><topic>X-ray microscopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sonnenfeld, Richard</creatorcontrib><creatorcontrib>Hansma, Paul K.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>Biography resource center</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sonnenfeld, Richard</au><au>Hansma, Paul K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic-Resolution Microscopy in Water</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>1986-04-11</date><risdate>1986</risdate><volume>232</volume><issue>4747</issue><spage>211</spage><epage>213</epage><pages>211-213</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>The scanning tunneling microscope is revolutionizing the study of surfaces. In ultrahigh vacuum it is capable not only of imaging individual atoms but also of determining energy states on an atom-by-atom basis. It is now possible to operate this instrument in water. Aqueous optical microscopy is confined to a lateral resolution limit of about 2000 angstroms, and aqueous x-ray microscopy has yielded a lateral resolution of 75 angstroms. With a scanning tunneling microscope, an image of a graphite surface immersed in deionized water was obtained with features less than 3 angstroms apart clearly resolved. Further, an image measured in saline solution demonstrated that the instrument can be operated under conditions useful for many biological samples.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>17780805</pmid><doi>10.1126/science.232.4747.211</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 1986-04, Vol.232 (4747), p.211-213 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_733196999 |
source | JSTOR Archival Journals and Primary Sources Collection; Science Online_科学在线 |
subjects | Electric current Electric potential Graphite Imaging Josephson effect Methods Micrometers Microscope and microscopy Microscopes Microscopy Scanning electron microscopes Technology Travel Tunneling spectroscopy Water Water immersion X-ray microscope X-ray microscopes |
title | Atomic-Resolution Microscopy in Water |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A31%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic-Resolution%20Microscopy%20in%20Water&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Sonnenfeld,%20Richard&rft.date=1986-04-11&rft.volume=232&rft.issue=4747&rft.spage=211&rft.epage=213&rft.pages=211-213&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.232.4747.211&rft_dat=%3Cgale_proqu%3EA4374744%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c747t-67461ad44143721c27aaf55970d835efd4f2751496193312928f7e0eee9305993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=213525464&rft_id=info:pmid/17780805&rft_galeid=A4374744&rft_jstor_id=1696880&rfr_iscdi=true |